Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2021, Volume 22, Issue 3, Pages 474–478
DOI: https://doi.org/10.22405/2226-8383-2018-22-3-474-478
(Mi cheb1090)
 

BRIEF MESSAGE

On a property of the Fenchel transform

A. A. Farvazova

Lomonosov Moscow State University (Moscow)
References:
Abstract: We consider the class of functions $\Phi \colon \mathbb{R} \to [0, + \infty]$, which are lower semicontinuous, even, convex and $ \Phi (0) = 0 $. The Fenchel transform $\Psi$ from $\Phi$ also belongs to this class of functions. We will define functions that play the role of derivatives for all functions from our class and prove that these functions are mutually inverse in a generalized sense.
Keywords: utility maximization, Orlicz space, Fenchel transform.
Received: 28.05.2021
Revised: 30.06.2021
Accepted: 20.09.2021
Document Type: Article
UDC: 517
Language: Russian
Citation: A. A. Farvazova, “On a property of the Fenchel transform”, Chebyshevskii Sb., 22:3 (2021), 474–478
Citation in format AMSBIB
\Bibitem{Far21}
\by A.~A.~Farvazova
\paper On a property of the Fenchel transform
\jour Chebyshevskii Sb.
\yr 2021
\vol 22
\issue 3
\pages 474--478
\mathnet{http://mi.mathnet.ru/cheb1090}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-3-474-478}
Linking options:
  • https://www.mathnet.ru/eng/cheb1090
  • https://www.mathnet.ru/eng/cheb/v22/i3/p474
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025