|
HISTORY OF MATH AND APPLICATIONS
Empirical mathematical model of change in the actual contact area of metals depending on the friction path
A. D. Brekia, V. A. Yakhimovicha, S. G. Chulkinbc, A. A. Moskaletsa, I. A. Shulgina, E. B. Sedakovaab, Yu. G. Barabanshchikova, S. N. Kutepovd, O. V. Kuzovlevae a Peter the Great St. Petersburg Polytechnic University (St. Petersburg)
b Institute of Mechanical Engineering Problems of the Russian
Academy of Sciences (St. Petersburg)
c St. Petersburg State Marine Technical University (St. Petersburg)
d Tula State Lev Tolstoy Pedagogical University (Tula)
e Russian State University of Justice (Moscow)
Abstract:
The article presents a new empirical mathematical model for describing the change in the actual contact area of metals depending on the friction path, including such characteristics as the sharpness of the change in the actual contact area, the initial intensity of the change in the actual contact area, the increment in the intensity of the change in the actual contact area, the value of the friction path corresponding to the minimum "acceleration" of changes in the actual area of contact. The validity of the developed mathematical model is shown for the friction of pyramidal indenters made of aluminum, copper and steel St.3 on a steel surface.
Keywords:
mathematical model, friction, actual contact area, indenter, frictional interaction.
Received: 21.09.2022 Accepted: 22.12.2022
Citation:
A. D. Breki, V. A. Yakhimovich, S. G. Chulkin, A. A. Moskalets, I. A. Shulgin, E. B. Sedakova, Yu. G. Barabanshchikov, S. N. Kutepov, O. V. Kuzovleva, “Empirical mathematical model of change in the actual contact area of metals depending on the friction path”, Chebyshevskii Sb., 23:5 (2022), 188–197
Linking options:
https://www.mathnet.ru/eng/cheb1265 https://www.mathnet.ru/eng/cheb/v23/i5/p188
|
|