Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2024, Volume 25, Issue 3, Pages 11–36
DOI: https://doi.org/10.22405/2226-8383-2024-25-3-11-36
(Mi cheb1443)
 

On the simultaneous representation of numbers by the sum of five prime numbers

I. A. Allakov, B. Kh. Erdonov

Termez State University (Termez, Uzbekistan)
Abstract: Let $X-$be a sufficiently large real number, $b_{1},b_{2},b_{3}-$be integers with the condition $1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X, a_{ij}, (i=1,2,3; j=\overline{1.5})$ positive integers, $p_{1},...,p_{5}-$prime numbers. Let us set $B=max\{3|a_{ij}|\} , (i=1,2,3; j=\overline{1.5}), \vec{b} = (b_{1},b_{2},b_{3}), K=36\sqrt{3}B^{5}|\vec{b}|, E_{3,5}(X)=card\{b_{i} |1\le {{b}_{i}}\le X, b_{i}\neq a_{i1} p_{1}+\cdots+a_{i5} p_{5}, i=1,2,3\}$. In the paper it is proved that the system $b_{i}=a_{i1}p_{1}+\cdots+a_{i5}p_{5}, (i=1,2,3)$ is solvable in prime numbers $p_{1},\cdots,p_{5}$, for all triples $\vec{b}=(b_{1}, b_{2},b_{3}), 1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X$, with the exception of no more than $E_{3,5}(X)$ triples of them, and a lower bound is obtained for the $R(\vec{b})-$number of solutions of this system, that is, the inequality $R(\vec{b})>> K^{2-\varepsilon}( \log K)^{-5}$ is proved to be true, for all $(b_{1},b_{2},b_{3})$ with the exception of no more than $X^{3-\varepsilon}$ triples of them.
Keywords: estimate, positive solvability, congruent solvability, Euler's constant, effective constant, fixed number, prime number, system of linear equations, power estimate, comparisons.
Received: 13.03.2024
Accepted: 04.09.2024
Document Type: Article
UDC: 511.325
Language: Russian
Citation: I. A. Allakov, B. Kh. Erdonov, “On the simultaneous representation of numbers by the sum of five prime numbers”, Chebyshevskii Sb., 25:3 (2024), 11–36
Citation in format AMSBIB
\Bibitem{AllErd24}
\by I.~A.~Allakov, B.~Kh.~Erdonov
\paper On the simultaneous representation of numbers by the sum of five prime numbers
\jour Chebyshevskii Sb.
\yr 2024
\vol 25
\issue 3
\pages 11--36
\mathnet{http://mi.mathnet.ru/cheb1443}
\crossref{https://doi.org/10.22405/2226-8383-2024-25-3-11-36}
Linking options:
  • https://www.mathnet.ru/eng/cheb1443
  • https://www.mathnet.ru/eng/cheb/v25/i3/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025