Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2024, Volume 25, Issue 5, Pages 254–261
DOI: https://doi.org/10.22405/2226-8383-2024-25-5-254-261
(Mi cheb1507)
 

BRIEF MESSAGE

On question about semi-modularity of lattice of subgroups of finite groups

I. A. Tsybin, G. N. Titov

Kuban State University (Krasnodar)
Abstract: This article considers finite groups whose lattice of subgroups satisfy certain generalized semi-modularity conditions. The main result is the theorem: the lattice of subgroups of the finite group $G$ is $1$-lower semi-modular whenever the lattice of subgroups of $G$ is upper semi-modular and the lattice of subgroups of any proper subgroup of $G$ is lower semi-modular.
Keywords: finite group, semi-modular lattice, generalized semi-modular lattice.
Received: 03.07.2024
Accepted: 26.12.2024
Document Type: Article
UDC: 512.542 + 512.567.2
Language: Russian
Citation: I. A. Tsybin, G. N. Titov, “On question about semi-modularity of lattice of subgroups of finite groups”, Chebyshevskii Sb., 25:5 (2024), 254–261
Citation in format AMSBIB
\Bibitem{TsyTit24}
\by I.~A.~Tsybin, G.~N.~Titov
\paper On question about semi-modularity of lattice of subgroups of finite groups
\jour Chebyshevskii Sb.
\yr 2024
\vol 25
\issue 5
\pages 254--261
\mathnet{http://mi.mathnet.ru/cheb1507}
\crossref{https://doi.org/10.22405/2226-8383-2024-25-5-254-261}
Linking options:
  • https://www.mathnet.ru/eng/cheb1507
  • https://www.mathnet.ru/eng/cheb/v25/i5/p254
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :33
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026