Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2025, Volume 26, Issue 1, Pages 47–61
DOI: https://doi.org/10.22405/2226-8383-2025-26-1-47-61
(Mi cheb1514)
 

On some extremal problems for entire functions of exponential type

A. D. Manovab

a Steklov Mathematical Institute of Russian Academy of Sciences (Moscow)
b Donetsk State University (Donetsk)
Abstract: In this paper we consider a number of extremal problems for nonnegative and integrable entire functions of exponential type $\leqslant\sigma$ (the class $\mathcal{E}_{1,\sigma}^+$).
The problems under consideration have the following form. Let $\Lambda_\rho$ be a translation invariant operator with a locally integrable symbol $\rho(x)$, $x\in\mathbb{R}$, such that $\rho(x)=\overline{\rho(-x)}$, $x\in\mathbb{R}$. For a fixed $\sigma>0$, it is required to find the following constants:
\begin{equation*} \begin{split} M^{\ast}(\rho,\sigma)&=\sup\{(\Lambda_\rho f)(0):f\in\mathcal{E}_{1,\sigma}^{+},\ \|f\|_1=2\pi\},\\ m^{\ast}(\rho,\sigma)&=\inf\{(\Lambda_\rho f)(0):f\in\mathcal{E}_{1,\sigma}^{+},\ \|f\|_1=2\pi\}. \end{split} \end{equation*}
This general problem reduces to an equivalent extremal problem for positive-definite functions, the solution of which is known. As consequence, we obtained exact values of $M^{\ast}(\rho,\sigma)$ and $m^{\ast}(\rho,\sigma)$ for a number of different symbols $\rho$. In particular, we consider cases where $\Lambda_\rho$ is a differential or difference operator of a special form.
Keywords: entire functions of exponential type, extremal problems, positive-definite functions, Bochner theorem, Fourier transform.
Funding agency Grant number
Russian Science Foundation 19-71-30012
Received: 19.11.2024
Accepted: 10.03.2025
Document Type: Article
UDC: 517.5+519.213
Language: Russian
Citation: A. D. Manov, “On some extremal problems for entire functions of exponential type”, Chebyshevskii Sb., 26:1 (2025), 47–61
Citation in format AMSBIB
\Bibitem{Man25}
\by A.~D.~Manov
\paper On some extremal problems for entire functions of exponential type
\jour Chebyshevskii Sb.
\yr 2025
\vol 26
\issue 1
\pages 47--61
\mathnet{http://mi.mathnet.ru/cheb1514}
\crossref{https://doi.org/10.22405/2226-8383-2025-26-1-47-61}
Linking options:
  • https://www.mathnet.ru/eng/cheb1514
  • https://www.mathnet.ru/eng/cheb/v26/i1/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025