Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2025, Volume 26, Issue 2, Pages 61–70
DOI: https://doi.org/10.22405/2226-8383-2025-26-2-61-70
(Mi cheb1536)
 

Representations for real numbers

A. Ghiyasia, I. P. Mikhailovb, V. N. Chubarikovc

a Allameh Tabataba’i University (Iran)
b Kazan Aviation Institute (Leninogorsk)
c Lomonosov Moscow State University (Moscow)
Abstract: In this paper theorems on the representations of real numbers $\alpha$ by using infinite iteration of a sequence of positive monotonic functions $\alpha_n=f_n(x_n)$ in the form
$$ \alpha=\lambda_0+f_1(\lambda_1+f_2(\lambda_2+f_3(\lambda_3+\dots))), $$
where “digits” $\lambda_n, n\geq 0,$ and “remainders”
$$ r_n=r_n(\alpha)=f_{n+1}(\lambda_{n+1}+f_{n+2}(\lambda_{n+2}+f_{n+3}(\lambda_{n+3}+\dots))), n\geq 0, $$
are defined by the following recurrent formulas
$$ \lambda_0=[\alpha], r_0=\{\alpha\}, $$

$$ \lambda_n=[\varphi_n(r_{n-1}(\alpha))], r_n=\{\varphi(r_{n-1})\}, $$
moreover $\{z\}$ and $[z]$ denote accordingly the fractional and the integral parts of the real number $z,$ and $x_n=\varphi_n(\alpha_n), n\geq 1,$ are inverse functions of $\alpha_n=f_n(x_n).$
In particular, the representation of the number $\alpha$ by using function $f(x)=\frac 1x$ leads to the continued fraction of the number $\alpha.$ The general case when $f(x)$ is decreasing function have been considered by B.H. Bissinger (1944) and A. Rényi (1957). For the function $f(x)=\frac xq$ as $q\geq 2$ is the natural number, is obtained $q$-adic the representation of the form $\alpha=\sum\lambda_nq^{-n},$ where digits $\lambda_n, n\geq 1,$ can to receive all integral values from $0$ to $q-1.$ The case when $f(x)$ is increasing function have been investigated by C.I. Everett (1946) and A. Rényi (1957). The representation $\alpha$ for $f(x)=\frac x\theta$ is nonintegral number $\theta>1$ have been studied A. Rényi (1957) and A.O. Gelfond (1959). In the present paper for the sequence of functions $f_n(x)=\frac x{q_n}, q_n\geq 2,$ are integer, has been investigated the representation of $\alpha$ on the multiplicative system of numbers as $n\geq 1$ in the form
$$ \alpha=\lambda_0+\frac{\lambda_1}{q_1}+\dots +\frac{\lambda_n}{q_1\dots q_n}+\frac{x_n}{q_1\dots q_n}, $$
where digits $\lambda_n$ can to receive integral values from $0$ to $q_n-1.$
A. Kh. Ghyasi (2007) has been generalized Gelfond theorem concerning the multiplicative system of numbers. Let $\theta_n, n\geq 1, $ be a sequence of real numbers, each of which greater than $1$. Then any real number $\alpha, 0<\alpha<1,$ can be represented in the form $\alpha=\sum\limits_{k=1}^n\frac{\lambda_k}{\theta_1\dots\theta_k}+\frac{x_n }{\theta_1\dots\theta_n}, n\geq 1,$ where the sequence $x_n$ of error terms is defined by recurrence
$$ x_0=\{\alpha\}, x_1=\{\theta_1x_0\}, x_n=\{\theta_nx_{n-1}\},\dots, $$
and the sequence of integers $\lambda_n$ is defined by the rule
$$ \lambda_0=[\alpha], \lambda_1=[\theta_1x_0],\dots,\lambda_n=[\theta_nx_{n-1}],\dots. $$
Keywords: $q$-adic expansion, continued fraction, multiplicative number system.
Received: 25.01.2025
Accepted: 07.04.2025
Document Type: Article
UDC: 511.3
Language: Russian
Citation: A. Ghiyasi, I. P. Mikhailov, V. N. Chubarikov, “Representations for real numbers”, Chebyshevskii Sb., 26:2 (2025), 61–70
Citation in format AMSBIB
\Bibitem{GhiMikChu25}
\by A.~Ghiyasi, I.~P.~Mikhailov, V.~N.~Chubarikov
\paper Representations for real numbers
\jour Chebyshevskii Sb.
\yr 2025
\vol 26
\issue 2
\pages 61--70
\mathnet{http://mi.mathnet.ru/cheb1536}
\crossref{https://doi.org/10.22405/2226-8383-2025-26-2-61-70}
Linking options:
  • https://www.mathnet.ru/eng/cheb1536
  • https://www.mathnet.ru/eng/cheb/v26/i2/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025