Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2010, Volume 11, Issue 2, Pages 4–24 (Mi cheb175)  

An asymptotic formula for the expectation of finite elliptic Minkowski fractions

O. A. Gorkusha

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences
References:
Abstract: We prove asymptotic formulae with two significant terms for the expectation of the random variable $\nu(c/d)$ — length of Minkowski continued fraction with parametre $\Omega=2$ when the variables $c$ and $d$ range over the set $1\le c\le d\le R<\infty$.
Received: 02.11.2010
Bibliographic databases:
Document Type: Article
UDC: 511.9
MSC: Primary 11A55; Secondary 11A05
Language: Russian
Citation: O. A. Gorkusha, “An asymptotic formula for the expectation of finite elliptic Minkowski fractions”, Chebyshevskii Sb., 11:2 (2010), 4–24
Citation in format AMSBIB
\Bibitem{Gor10}
\by O.~A.~Gorkusha
\paper An asymptotic formula for the expectation of finite elliptic Minkowski fractions
\jour Chebyshevskii Sb.
\yr 2010
\vol 11
\issue 2
\pages 4--24
\mathnet{http://mi.mathnet.ru/cheb175}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2919782}
Linking options:
  • https://www.mathnet.ru/eng/cheb175
  • https://www.mathnet.ru/eng/cheb/v11/i2/p4
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :105
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026