|
BRIEF REPORTS
Mean-value theorem for non-complete rational trigonometric sums
V. N. Chubarikova, H. M. Salibab a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Notre Dame University Louaize
Abstract:
For $2k>0.5n(n+1)+1$ $0\leq l\leq 0,5k-w-1, w=[\ln n/\ln p,]$ the asymptotic formulas was proved for the number of solutions of the system of congruences
$$
\left\{
\begin{array}{l}
x_1+\dots+x_k\equiv y_1+\dots +y_k\pmod{p^m}\ \dots\qquad\dots\qquad\dots\qquad\dots\qquad \ x_1^n+\dots+x_k^n\equiv y_1^n+\dots +y_k^n\pmod{p^m},
\end{array}
\right.
$$
where unknowns $x_1,\dots ,x_k,y_1,\dots,y_k$ run values up $1$ to $p^{m-l}$ from the complete system residues by modulo $p^{m}.$
The finding formula for $2k\leq 0.5n(n+1)+1$ has no the place.
Let be $1\leq s<r<\dots <n, s+r+\dots +n<0.5n(n+1), 0\leq l\leq 0,5k-w-1.$ Then as $2k>s+r+\dots +n$ for the number of the system of congruencies
$$
\left\{
\begin{array}{l}
x_1^s+\dots+x_k^s\equiv y_1^s+\dots +y_k^s\pmod{p^m} \ x_1^r+\dots+x_k^r\equiv y_1^r+\dots +y_k^r\pmod{p^m} \ \dots\qquad\dots\qquad\dots\qquad\dots\qquad\ x_1^n+\dots+x_k^n\equiv y_1^n+\dots +y_k^n\pmod{p^m},
\end{array}
\right.
$$
where unknowns $x_1,\dots ,x_k,y_1,\dots,y_k$ run values up $1$ to $p^{m-l}$ from the complete system residues by modulo $p^m,$ was found the asymptotic formula.
This formula has no place as $2k\leq s+r+\dots +n.$
Keywords:
non-complete rational trigonometric sums, Hua Loo-keng's method, the exponent of convergence of the average value of non-complete trigonometric sums.
Received: 27.07.2018 Accepted: 22.10.2018
Citation:
V. N. Chubarikov, H. M. Saliba, “Mean-value theorem for non-complete rational trigonometric sums”, Chebyshevskii Sb., 19:4 (2018), 252–258
Linking options:
https://www.mathnet.ru/eng/cheb714 https://www.mathnet.ru/eng/cheb/v19/i4/p252
|
| Statistics & downloads: |
| Abstract page: | 276 | | Full-text PDF : | 71 | | References: | 57 |
|