Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2018, Volume 19, Issue 4, Pages 252–258
DOI: https://doi.org/10.22405/2226-8383-2018-19-4-252-258
(Mi cheb714)
 

BRIEF REPORTS

Mean-value theorem for non-complete rational trigonometric sums

V. N. Chubarikova, H. M. Salibab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Notre Dame University Louaize
References:
Abstract: For $2k>0.5n(n+1)+1$ $0\leq l\leq 0,5k-w-1, w=[\ln n/\ln p,]$ the asymptotic formulas was proved for the number of solutions of the system of congruences
$$ \left\{
\begin{array}{l} x_1+\dots+x_k\equiv y_1+\dots +y_k\pmod{p^m}\ \dots\qquad\dots\qquad\dots\qquad\dots\qquad \ x_1^n+\dots+x_k^n\equiv y_1^n+\dots +y_k^n\pmod{p^m}, \end{array}
\right. $$
where unknowns $x_1,\dots ,x_k,y_1,\dots,y_k$ run values up $1$ to $p^{m-l}$ from the complete system residues by modulo $p^{m}.$
The finding formula for $2k\leq 0.5n(n+1)+1$ has no the place.
Let be $1\leq s<r<\dots <n, s+r+\dots +n<0.5n(n+1), 0\leq l\leq 0,5k-w-1.$ Then as $2k>s+r+\dots +n$ for the number of the system of congruencies
$$ \left\{
\begin{array}{l} x_1^s+\dots+x_k^s\equiv y_1^s+\dots +y_k^s\pmod{p^m} \ x_1^r+\dots+x_k^r\equiv y_1^r+\dots +y_k^r\pmod{p^m} \ \dots\qquad\dots\qquad\dots\qquad\dots\qquad\ x_1^n+\dots+x_k^n\equiv y_1^n+\dots +y_k^n\pmod{p^m}, \end{array}
\right. $$
where unknowns $x_1,\dots ,x_k,y_1,\dots,y_k$ run values up $1$ to $p^{m-l}$ from the complete system residues by modulo $p^m,$ was found the asymptotic formula. This formula has no place as $2k\leq s+r+\dots +n.$
Keywords: non-complete rational trigonometric sums, Hua Loo-keng's method, the exponent of convergence of the average value of non-complete trigonometric sums.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00071_а
Received: 27.07.2018
Accepted: 22.10.2018
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: V. N. Chubarikov, H. M. Saliba, “Mean-value theorem for non-complete rational trigonometric sums”, Chebyshevskii Sb., 19:4 (2018), 252–258
Citation in format AMSBIB
\Bibitem{ChuSal18}
\by V.~N.~Chubarikov, H.~M.~Saliba
\paper Mean-value theorem for non-complete rational trigonometric sums
\jour Chebyshevskii Sb.
\yr 2018
\vol 19
\issue 4
\pages 252--258
\mathnet{http://mi.mathnet.ru/cheb714}
\crossref{https://doi.org/10.22405/2226-8383-2018-19-4-252-258}
\elib{https://elibrary.ru/item.asp?id=36921205}
Linking options:
  • https://www.mathnet.ru/eng/cheb714
  • https://www.mathnet.ru/eng/cheb/v19/i4/p252
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :71
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025