Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 224–247
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-224-247
(Mi cheb729)
 

On a bounded remainder set for $(t,s)$ sequences I

Mordechay B. Levin

Department of Mathematics, Bar-Ilan University, Ramat-Gan, 5290002, Israel
References:
DOI: https://doi.org/10.22405/2226-8383-2018-20-1-224-247
Abstract: Let $\mathbf{x}_0,\mathbf{x}_1,\dots$ be a sequence of points in $[0,1)^s$. A subset $S$ of $[0,1)^s$ is called a bounded remainder set if there exist two real numbers $a$ and $C$ such that, for every integer $N$,

$$ | \mathrm{card}\{n <N \; | \; \mathbf{x}_{n} \in S\} - a N| <C . $$

Let $ (\mathbf{x}_n)_{n \geq 0} $ be an $s-$dimensional Halton-type sequence obtained from a global function field, $b \geq 2$, $\mathbf{\gamma} =(\gamma_1,...,\gamma_s)$, $\gamma_i \in [0, 1)$, with $b$-adic expansion $\gamma_i= \gamma_{i,1}b^{-1}+ \gamma_{i,2}b^{-2}+...$, $i=1,...,s$. In this paper, we prove that $[0,\gamma_1) \times ...\times [0,\gamma_s)$ is the bounded remainder set with respect to the sequence $(\mathbf{x}_n)_{n \geq 0}$ if and only if
\begin{equation} \nonumber \max_{1 \leq i \leq s} \max \{ j \geq 1 \; | \; \gamma_{i,j} \neq 0 \} < \infty. \end{equation}
We also obtain the similar results for a generalized Niederreiter sequences, Xing-Niederreiter sequences and Niederreiter-Xing sequences.
Keywords: bounded remainder set, $(t,s)$ sequence, Halton type sequences.
Received: 09.01.2019
Accepted: 10.04.2019
Document Type: Article
UDC: 510
Language: English
Citation: Mordechay B. Levin, “On a bounded remainder set for $(t,s)$ sequences I”, Chebyshevskii Sb., 20:1 (2019), 224–247
Citation in format AMSBIB
\Bibitem{Lev19}
\by Mordechay~B.~Levin
\paper On a bounded remainder set for $(t,s)$ sequences~I
\jour Chebyshevskii Sb.
\yr 2019
\vol 20
\issue 1
\pages 224--247
\mathnet{http://mi.mathnet.ru/cheb729}
Linking options:
  • https://www.mathnet.ru/eng/cheb729
  • https://www.mathnet.ru/eng/cheb/v20/i1/p224
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025