|
Chebyshevskii Sbornik, 2019, Volume 20, Issue 1, Pages 224–247 DOI: https://doi.org/10.22405/2226-8383-2018-20-1-224-247
(Mi cheb729)
|
|
|
|
On a bounded remainder set for $(t,s)$ sequences I
Mordechay B. Levin Department
of Mathematics, Bar-Ilan University, Ramat-Gan, 5290002, Israel
DOI:
https://doi.org/10.22405/2226-8383-2018-20-1-224-247
Abstract:
Let $\mathbf{x}_0,\mathbf{x}_1,\dots$ be a sequence of points in $[0,1)^s$.
A subset $S$ of $[0,1)^s$ is called a bounded remainder set if there exist two real numbers $a$ and $C$ such that, for every integer $N$,
$$
| \mathrm{card}\{n <N \; | \; \mathbf{x}_{n} \in S\} - a N| <C .
$$
Let $ (\mathbf{x}_n)_{n \geq 0} $ be an $s-$dimensional Halton-type sequence obtained from a global function field, $b \geq 2$,
$\mathbf{\gamma} =(\gamma_1,...,\gamma_s)$,
$\gamma_i \in [0, 1)$, with $b$-adic expansion $\gamma_i= \gamma_{i,1}b^{-1}+ \gamma_{i,2}b^{-2}+...$, $i=1,...,s$.
In this paper, we prove that $[0,\gamma_1) \times ...\times [0,\gamma_s)$ is the bounded remainder set with respect to the
sequence $(\mathbf{x}_n)_{n \geq 0}$ if and only if
\begin{equation} \nonumber
\max_{1 \leq i \leq s} \max \{ j \geq 1 \; | \; \gamma_{i,j} \neq 0 \} < \infty.
\end{equation}
We also obtain the similar results for a generalized Niederreiter sequences, Xing-Niederreiter sequences and Niederreiter-Xing sequences.
Keywords:
bounded remainder set, $(t,s)$ sequence, Halton type sequences.
Received: 09.01.2019 Accepted: 10.04.2019
Citation:
Mordechay B. Levin, “On a bounded remainder set for $(t,s)$ sequences I”, Chebyshevskii Sb., 20:1 (2019), 224–247
Linking options:
https://www.mathnet.ru/eng/cheb729 https://www.mathnet.ru/eng/cheb/v20/i1/p224
|
|