Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find







Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2021, Volume 6, Issue 2, Pages 152–161
DOI: https://doi.org/10.47475/2500-0101-2021-16202
(Mi chfmj232)
 

Mathematics

Satellites and products of $\Omega\zeta$-foliated Fitting classes

O. V. Kamozina

Bryansk State University of Engineering and Technology, Bryansk, Russia
References:
Abstract: All groups are assumed to be finite. Fitting class $\frak F=\Omega\zeta R(f,\varphi )=(G: O^\Omega (G)\in f(\Omega' )$ and $G^{\varphi (\Omega\cap\zeta_i )}\in f(\Omega\cap\zeta_i )$ for all $\Omega\cap\zeta_i \in\Omega\zeta (G))$ is called the $\Omega\zeta$-foliated Fitting class with $\Omega\zeta$-satellite $f$ and $\Omega\zeta$-direction $\varphi $. The directions of the $\Omega\zeta$-free and $\Omega\zeta$-canonical Fitting classes are denoted by $\varphi_0 $ and $\varphi_1 $, respectively. The paper describes the minimal $\Omega\zeta$-satellite of the $\Omega\zeta$-foliated Fitting class with $\Omega\zeta$-direction $\varphi$, where $\varphi_0\le\varphi $. It is shown that the Fitting product of two $\Omega\zeta$-foliated Fitting classes is $\Omega\zeta$-foliated Fitting class for $\Omega\zeta$-directions $\varphi$ such that $\varphi_0\le\varphi\le\varphi_1$. For $\Omega\zeta$-free and $\Omega\zeta$-canonical Fitting classes, results are obtained as corollaries of theorems. A maximal inner $\Omega\zeta$-satellite of an $\Omega\zeta$-free Fitting class and a maximal inner $\Omega\zeta\mathcal L$-satellite of the $\Omega\zeta$-canonical Fitting class are described. The results obtained can be used to study lattices, further study products and critical $\Omega\zeta$-foliated Fitting classes.
Keywords: finite group, Fitting class, $\Omega\zeta$-foliated, $\Omega\zeta$-free, $\Omega\zeta$-canonical, minimal $\Omega\zeta$-satellite, maximal internal $\Omega\zeta$-satellite, Fitting product.
Received: 04.12.2020
Revised: 06.02.2021
Document Type: Article
UDC: 512.542
Language: Russian
Citation: O. V. Kamozina, “Satellites and products of $\Omega\zeta$-foliated Fitting classes”, Chelyab. Fiz.-Mat. Zh., 6:2 (2021), 152–161
Citation in format AMSBIB
\Bibitem{Kam21}
\by O.~V.~Kamozina
\paper Satellites and products of $\Omega\zeta$-foliated Fitting classes
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2021
\vol 6
\issue 2
\pages 152--161
\mathnet{http://mi.mathnet.ru/chfmj232}
\crossref{https://doi.org/10.47475/2500-0101-2021-16202}
Linking options:
  • https://www.mathnet.ru/eng/chfmj232
  • https://www.mathnet.ru/eng/chfmj/v6/i2/p152
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :77
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025