Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2025, Volume 10, Issue 1, Pages 112–125
DOI: https://doi.org/10.47475/2500-0101-2025-10-1-112-125
(Mi chfmj426)
 

Mathematics

An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface

V. V. Tarkaevab

a Chelyabinsk State University, Chelyabinsk, Russia
b Krasovskii Institute of Mathematics and Mechanics of Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
References:
Abstract: This paper concerns pseudo-classical knots in the non-orientable manifold $\hat{\Sigma} =\Sigma \times [0,1]$, where $\Sigma$ is a non-orientable surface and a knot $K \subset \hat{\Sigma}$ is called pseudo-classical if $K$ is orientation-preserving path in $\hat{\Sigma}$. For this kind of knot we introduce an invariant $\Delta$ that is an analogue of Turaev comultiplication for knots in a thickened orientable surface. As its classical prototype, $\Delta$ takes value in a polynomial algebra generated by homotopy classes of non-contractible loops on $\Sigma$, however, as a ground ring we use some subring of $\mathbb{C}$ instead of $\mathbb{Z}$. Then we define a few homotopy, homology and polynomial invariants, which are consequences of $\Delta$, including an analogue of the affine index polynomial.
Keywords: knots in non-orientable manifold, knots in thickened surface, invariants of knots, Turaev comultiplication, affine index polynomial.
Funding agency Grant number
Russian Science Foundation 23-21-10014
The work is supported by Russian Science Foundation (grant number 23-21-10014).
Received: 30.07.2024
Revised: 08.12.2024
Document Type: Article
UDC: 515.162.8
Language: English
Citation: V. V. Tarkaev, “An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface”, Chelyab. Fiz.-Mat. Zh., 10:1 (2025), 112–125
Citation in format AMSBIB
\Bibitem{Tar25}
\by V.~V.~Tarkaev
\paper An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2025
\vol 10
\issue 1
\pages 112--125
\mathnet{http://mi.mathnet.ru/chfmj426}
\crossref{https://doi.org/10.47475/2500-0101-2025-10-1-112-125}
Linking options:
  • https://www.mathnet.ru/eng/chfmj426
  • https://www.mathnet.ru/eng/chfmj/v10/i1/p112
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025