|
|
Contemporary Mathematics. Fundamental Directions, 2007, Volume 25, Pages 80–87
(Mi cmfd107)
|
|
|
|
This article is cited in 7 scientific papers (total in 8 papers)
On Uniformly Convergent Rearrangements of Trigonometric Fourier Series
S. V. Konyagin M. V. Lomonosov Moscow State University
Abstract:
We show that if the module of continuity $\omega(f,\delta)$ of a $2\pi$-periodic function $f\in C(\mathbb T)$ is $o(1/\log\log1/\delta)$ as $\delta\to0+$ then there exists a rearrangement of the trigonometric Fourier series of $f$ converging uniformly to $f$.
Citation:
S. V. Konyagin, “On Uniformly Convergent Rearrangements of Trigonometric Fourier Series”, Theory of functions, CMFD, 25, PFUR, M., 2007, 80–87; Journal of Mathematical Sciences, 155:1 (2008), 81–88
Linking options:
https://www.mathnet.ru/eng/cmfd107 https://www.mathnet.ru/eng/cmfd/v25/p80
|
| Statistics & downloads: |
| Abstract page: | 615 | | Full-text PDF : | 199 | | References: | 78 |
|