Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2012, Volume 45, Pages 5–17 (Mi cmfd209)  

This article is cited in 1 scientific paper (total in 2 paper)

On trajectories entirely situated near a hyperbolic set

D. V. Anosovab

a Lomonosov Moscow State University, Moscow, Russia
b Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (218 kB) Citations (2)
References:
Abstract: Let $I_1$ be a set of points such that their trajectories under a diffeomorphism $f_1$ are entirely close enough to a hyperbolic set $F_1$ of this diffeomorphism. Then it is proved that the structure of $I_1$ and restriction $f_1|_{I_1}$ ("motion in $I_1$") are essentially defined (up to an equivariant homeomorphism) by “internal dynamics” in $F_1$, i.e., by the restriction $f_1|_{F_1}$. (In more detail: the equivariant homeomorphism $g_1$ of the set $F_1$ on the hyperbolic set $F_2$ of the second diffeomorphism $f_2$ (probably, acting on another manifold $M_2$) is extendable to an equivariant homeomorphic embedding $I_1\to M_2$. The image of the imbedding contains all the trajectories $f_2$ close enough to $F_2$.)
English version:
Journal of Mathematical Sciences, 2014, Volume 201, Issue 5, Pages 553–565
DOI: https://doi.org/10.1007/s10958-014-2011-z
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: D. V. Anosov, “On trajectories entirely situated near a hyperbolic set”, Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2011). Part 1, CMFD, 45, PFUR, M., 2012, 5–17; Journal of Mathematical Sciences, 201:5 (2014), 553–565
Citation in format AMSBIB
\Bibitem{Ano12}
\by D.~V.~Anosov
\paper On trajectories entirely situated near a~hyperbolic set
\inbook Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2011). Part~1
\serial CMFD
\yr 2012
\vol 45
\pages 5--17
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd209}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3087049}
\transl
\jour Journal of Mathematical Sciences
\yr 2014
\vol 201
\issue 5
\pages 553--565
\crossref{https://doi.org/10.1007/s10958-014-2011-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905879736}
Linking options:
  • https://www.mathnet.ru/eng/cmfd209
  • https://www.mathnet.ru/eng/cmfd/v45/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025