Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2017, Volume 63, Issue 4, Pages 689–702
DOI: https://doi.org/10.22363/2413-3639-2017-63-4-689-702
(Mi cmfd342)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators

A. M. Savchuk

Lomonosov Moscow State University, 1 Leninskiye Gory, 119992 Moscow, Russia
Full-text PDF (231 kB) Citations (3)
References:
Abstract: We consider the problem of estimating of expressions of the kind $\Upsilon(\lambda)=\sup_{x\in[0,1]}\left|\int_0^xf(t)e^{i\lambda t}\,dt\right|$. In particular, for the case $f\in L_p[0,1]$, $p\in(1,2]$, we prove the estimate $\|\Upsilon(\lambda)\|_{L_q(\mathbb R)}\le C\|f\|_{L_p}$ for any $q>p'$, where $1/p+1/p'=1$. The same estimate is proved for the space $L_q(d\mu)$, where $d\mu$ is an arbitrary Carleson measure in the upper half-plane $\mathbb C_+$. Also, we estimate more complex expressions of the kind $\Upsilon(\lambda)$ arising in study of asymptotics of the fundamental system of solutions for systems of the kind $\mathbf y'=B\mathbf y+A(x)\mathbf y+C(x,\lambda)\mathbf y$ with dimension $n$ as $|\lambda|\to\infty$ in suitable sectors of the complex plane.
Funding agency Grant number
Russian Science Foundation 17-11-00754
Document Type: Article
UDC: 517.984.52
Language: Russian
Citation: A. M. Savchuk, “The Calderon–Zygmund operator and its relation to asymptotic estimates for ordinary differential operators”, Differential and functional differential equations, CMFD, 63, no. 4, Peoples' Friendship University of Russia, M., 2017, 689–702
Citation in format AMSBIB
\Bibitem{Sav17}
\by A.~M.~Savchuk
\paper The Calderon--Zygmund operator and its relation to asymptotic estimates for ordinary differential operators
\inbook Differential and functional differential equations
\serial CMFD
\yr 2017
\vol 63
\issue 4
\pages 689--702
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd342}
\crossref{https://doi.org/10.22363/2413-3639-2017-63-4-689-702}
Linking options:
  • https://www.mathnet.ru/eng/cmfd342
  • https://www.mathnet.ru/eng/cmfd/v63/i4/p689
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025