Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2018, Volume 64, Issue 1, Pages 74–85
DOI: https://doi.org/10.22363/2413-3639-2018-64-1-74-85
(Mi cmfd347)
 

Generalized Keller–Osserman conditions for fully nonlinear degenerate elliptic equations

I. Capuzzo Dolcettaa, F. Leonia, A. Vitolob

a Dipartimento di Matematica, Sapienza Università di Roma, Rome, Italy
b Dipartimento di Ingegneria Civile, Università di Salerno, Fisciano, Italy
References:
Abstract: We discuss the existence of entire (i.e. defined on the whole space) subsolutions of fully nonlinear degenerate elliptic equations, giving necessary and sufficient conditions on the coefficients of the lower order terms which extend the classical Keller–Osserman conditions for semilinear elliptic equations. Our analysis shows that, when the conditions of existence of entire subsolutions fail, a priori upper bounds for local subsolutions can be obtained.
Document Type: Article
UDC: 517.957
Language: Russian
Citation: I. Capuzzo Dolcetta, F. Leoni, A. Vitolo, “Generalized Keller–Osserman conditions for fully nonlinear degenerate elliptic equations”, Differential and functional differential equations, CMFD, 64, no. 1, Peoples' Friendship University of Russia, M., 2018, 74–85
Citation in format AMSBIB
\Bibitem{CapLeoVit18}
\by I.~Capuzzo Dolcetta, F.~Leoni, A.~Vitolo
\paper Generalized Keller--Osserman conditions for fully nonlinear degenerate elliptic equations
\inbook Differential and functional differential equations
\serial CMFD
\yr 2018
\vol 64
\issue 1
\pages 74--85
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd347}
\crossref{https://doi.org/10.22363/2413-3639-2018-64-1-74-85}
Linking options:
  • https://www.mathnet.ru/eng/cmfd347
  • https://www.mathnet.ru/eng/cmfd/v64/i1/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025