Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2019, Volume 65, Issue 1, Pages 137–155
DOI: https://doi.org/10.22363/2413-3639-2019-65-1-137-155
(Mi cmfd381)
 

The cyclical compactness in Banach $C_{\infty}(Q)$-modules

V. I. Chilina, J. A. Karimovb

a National University of Uzbekistan named after M. Ulugbek, Tashkent, Uzbekistan
b V. I. Romanovskii Institute of Mathematics, Acad. Sci. of Uzbekistan, Tashkent, Uzbekistan
References:
Abstract: In this paper, we study the class of laterally complete commutative unital regular algebras $\mathcal A$ over arbitrary fields. We introduce a notion of passport $ \Gamma(X)$ for a faithful regular laterally complete $\mathcal A$-modules $X$, which consist of uniquely defined partition of unity in the Boolean algebra of all idempotents in $\mathcal A$ and of the set of pairwise different cardinal numbers. We prove that $\mathcal A$-modules $X$ and $Y$ are isomorphic if and only if $ \Gamma(X) = \Gamma(Y)$. Further we study Banach $\mathcal A$-modules in the case $\mathcal A=C_\infty(Q)$ or $\mathcal A=C_\infty(Q) + i\cdot C_\infty(Q)$. We establish the equivalence of all norms in a finite-dimensional (respectively, $\sigma$-finite-dimensional) $\mathcal A$-module and prove an $\mathcal A$-version of Riesz Theorem, which gives the criterion of a finite-dimensionality (respectively, $\sigma$-finite-dimensionality) of a Banach $\mathcal A$-module.
Document Type: Article
UDC: 517.98
Language: Russian
Citation: V. I. Chilin, J. A. Karimov, “The cyclical compactness in Banach $C_{\infty}(Q)$-modules”, Contemporary problems in mathematics and physics, CMFD, 65, no. 1, Peoples' Friendship University of Russia, M., 2019, 137–155
Citation in format AMSBIB
\Bibitem{ChiKar19}
\by V.~I.~Chilin, J.~A.~Karimov
\paper The cyclical compactness in Banach $C_{\infty}(Q)$-modules
\inbook Contemporary problems in mathematics and physics
\serial CMFD
\yr 2019
\vol 65
\issue 1
\pages 137--155
\publ Peoples' Friendship University of Russia
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd381}
\crossref{https://doi.org/10.22363/2413-3639-2019-65-1-137-155}
Linking options:
  • https://www.mathnet.ru/eng/cmfd381
  • https://www.mathnet.ru/eng/cmfd/v65/i1/p137
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :103
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025