|
The cyclical compactness in Banach $C_{\infty}(Q)$-modules
V. I. Chilina, J. A. Karimovb a National University of Uzbekistan named after
M. Ulugbek, Tashkent, Uzbekistan
b V. I. Romanovskii Institute of Mathematics, Acad. Sci. of Uzbekistan, Tashkent, Uzbekistan
Abstract:
In this paper, we study the class of laterally complete commutative unital regular algebras $\mathcal A$ over arbitrary fields. We introduce a notion of passport $ \Gamma(X)$ for a faithful regular laterally complete $\mathcal A$-modules $X$, which consist of uniquely defined partition of unity in the Boolean algebra of all idempotents in $\mathcal A$ and of the set of pairwise different cardinal numbers. We prove that $\mathcal A$-modules $X$ and $Y$ are isomorphic if and only if $ \Gamma(X) = \Gamma(Y)$. Further we study Banach $\mathcal A$-modules in the case $\mathcal A=C_\infty(Q)$ or $\mathcal A=C_\infty(Q) + i\cdot C_\infty(Q)$. We establish the equivalence of all norms in a finite-dimensional (respectively, $\sigma$-finite-dimensional) $\mathcal A$-module and prove an $\mathcal A$-version of Riesz Theorem, which gives the criterion of a finite-dimensionality (respectively, $\sigma$-finite-dimensionality) of a Banach $\mathcal A$-module.
Citation:
V. I. Chilin, J. A. Karimov, “The cyclical compactness in Banach $C_{\infty}(Q)$-modules”, Contemporary problems in mathematics and physics, CMFD, 65, no. 1, Peoples' Friendship University of Russia, M., 2019, 137–155
Linking options:
https://www.mathnet.ru/eng/cmfd381 https://www.mathnet.ru/eng/cmfd/v65/i1/p137
|
| Statistics & downloads: |
| Abstract page: | 258 | | Full-text PDF : | 103 | | References: | 46 |
|