Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 2, Pages 306–331
DOI: https://doi.org/10.22363/2413-3639-2023-69-2-306-331
(Mi cmfd504)
 

On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations

E. Yu. Panovab

a Yaroslav-the-Wise Novgorod State University, Novgorod the Great, Russia
b Scientific Research and Development Center, Novgorod the Great, Russia
References:
Abstract: We consider a second-order nonlinear degenerate anisotropic parabolic equation in the case when the flux vector is only continuous and the nonnegative diffusion matrix is bounded and measurable. The concepts of entropy sub- and supersolution of the Cauchy problem are introduced, so that the entropy solution of this problem, understood in the sense of Chen–Perthame, is both an entropy sub- and supersolution. It is established that the maximum of entropy subsolutions of the Cauchy problem is also an entropy subsolution of this problem. This result is used to prove the existence of the largest entropy subsolution (and the smallest entropy supersolution). It is also shown that the largest entropy subsolution and the smallest entropy supersolution are also entropy solutions.
Keywords: nonlinear degenerate parabolic equations, Cauchy problem, entropy solutions, entropy sub- and supersolutions, maximum/minimum principle, method of doubling variables.
Funding agency Grant number
Russian Science Foundation 22-21-00344
The work was financially supported by the Russian Science Foundation, grant № 22-21-00344.
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: E. Yu. Panov, “On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations”, CMFD, 69, no. 2, PFUR, M., 2023, 306–331
Citation in format AMSBIB
\Bibitem{Pan23}
\by E.~Yu.~Panov
\paper On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations
\serial CMFD
\yr 2023
\vol 69
\issue 2
\pages 306--331
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd504}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-2-306-331}
\edn{https://elibrary.ru/UGEKXW}
Linking options:
  • https://www.mathnet.ru/eng/cmfd504
  • https://www.mathnet.ru/eng/cmfd/v69/i2/p306
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025