Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 2, Pages 332–341
DOI: https://doi.org/10.22363/2413-3639-2023-69-2-332-341
(Mi cmfd505)
 

Some inverse problems of Fourier optics

V. È. Petrov

TWELL Ltd., Saint Petersburg, Russia
References:
Abstract: We consider a general formulation of the problem of signal reconstruction from incomplete a priori information about it and measurements of the intensity of its Fourier transform. Some special cases are studied when a priori information is the even or odd part of the signal, as well as the real or imaginary part of the signal. Exact solutions in quadratures are constructed. An algorithm for solving the problem is proposed when only the signal and image intensities are known.
Keywords: Fourier transforms, inverse problems of optics, Gerchberg–Saxton algorithm.
Bibliographic databases:
Document Type: Article
UDC: 517.443, 535.8
Language: Russian
Citation: V. È. Petrov, “Some inverse problems of Fourier optics”, CMFD, 69, no. 2, PFUR, M., 2023, 332–341
Citation in format AMSBIB
\Bibitem{Pet23}
\by V.~\`E.~Petrov
\paper Some inverse problems of Fourier optics
\serial CMFD
\yr 2023
\vol 69
\issue 2
\pages 332--341
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd505}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-2-332-341}
\edn{https://elibrary.ru/UFJOVO}
Linking options:
  • https://www.mathnet.ru/eng/cmfd505
  • https://www.mathnet.ru/eng/cmfd/v69/i2/p332
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025