Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2023, Volume 69, Issue 4, Pages 697–711
DOI: https://doi.org/10.22363/2413-3639-2023-69-4-697-711
(Mi cmfd523)
 

Boundary-value problem for an elliptic functional differential equation with dilation and rotation of arguments

L. E. Rossovskiia, A. A. Tovsultanovbc

a RUDN University, Moscow, Russia
b Kadyrov Chechen State University, Grozny, Russia
c North Caucasus Center for Mathematical Research VSC RAS, Vladikavkaz, Russia
References:
Abstract: The paper is devoted to the Dirichlet problem in a flat bounded domain for a linear second-order functional differential equation in the divergent form with dilation, contraction and rotation of the argument of the higher-order derivatives of the unknown function. We study the existence, the uniqueness and the smoothness of the generalized solution for all possible values of the coefficients and parameters of transformations in the equation.
Keywords: elliptic functional differential equation, boundary-value problem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
The work was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of a state assignment (project № FSSF2023-0016)
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.929
Language: Russian
Citation: L. E. Rossovskii, A. A. Tovsultanov, “Boundary-value problem for an elliptic functional differential equation with dilation and rotation of arguments”, CMFD, 69, no. 4, PFUR, M., 2023, 697–711
Citation in format AMSBIB
\Bibitem{RosTov23}
\by L.~E.~Rossovskii, A.~A.~Tovsultanov
\paper Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments
\serial CMFD
\yr 2023
\vol 69
\issue 4
\pages 697--711
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd523}
\crossref{https://doi.org/10.22363/2413-3639-2023-69-4-697-711}
\edn{https://elibrary.ru/ZCQCLC}
Linking options:
  • https://www.mathnet.ru/eng/cmfd523
  • https://www.mathnet.ru/eng/cmfd/v69/i4/p697
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025