Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2024, Volume 70, Issue 3, Pages 343–355
DOI: https://doi.org/10.22363/2413-3639-2024-70-3-343-355
(Mi cmfd544)
 

On the formulation of boundary-value problems for binomial functional equations

A. B. Antonevich, D. I. Kravtsov

Belarusian State University, Minsk, Belarus
References:
DOI: https://doi.org/10.22363/2413-3639-2024-70-3-343-355
Abstract: In a number of previous works it was found that for binomial functional equations of the form
$$ \hspace{-1.5cm} a(x)u(\alpha(x)) - \lambda u(x) = v(x), x \in X, $$
where $\alpha:X \to X$ is an invertible mapping of the set $X$ into itself, a situation typical for differential equations is possible: the equation is solvable for any right-hand side and there is no uniqueness of the solution. As in the case of differential equations, the question arises of formulating well-posed boundary value problems, i.e., of specifying additional conditions under which the solution exists and is unique. In this paper, we discuss the question of what kind of additional conditions lead to well-posed boundary-value problems for the equations under consideration.
Keywords: binomial functional equation, uniqueness of solution, well-posed boundary-value problem.
English version:
Journal of Mathematical Sciences, 2024, Volume 287, Issue 4, Pages 533–544
DOI: https://doi.org/10.1007/s10958-024-07513-2
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. B. Antonevich, D. I. Kravtsov, “On the formulation of boundary-value problems for binomial functional equations”, CMFD, 70, no. 3, PFUR, M., 2024, 343–355; Journal of Mathematical Sciences, 287:4 (2024), 533–544
Citation in format AMSBIB
\Bibitem{AntKra24}
\by A.~B.~Antonevich, D.~I.~Kravtsov
\paper On the formulation of boundary-value problems for binomial functional equations
\serial CMFD
\yr 2024
\vol 70
\issue 3
\pages 343--355
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd544}
\edn{https://elibrary.ru/PFBHQS}
\transl
\jour Journal of Mathematical Sciences
\yr 2024
\vol 287
\issue 4
\pages 533--544
\crossref{https://doi.org/10.1007/s10958-024-07513-2}
Linking options:
  • https://www.mathnet.ru/eng/cmfd544
  • https://www.mathnet.ru/eng/cmfd/v70/i3/p343
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025