|
Contemporary Mathematics. Fundamental Directions, 2024, Volume 70, Issue 3, Pages 389–402 DOI: https://doi.org/10.22363/2413-3639-2024-70-3-389-402
(Mi cmfd547)
|
|
|
|
On expanding attractors of arbitrary codimension
E. V. Zhuzhoma, V. S. Medvedev National Research University “Higher School of Economics,” Nizhniy Novgorod, Russia
DOI:
https://doi.org/10.22363/2413-3639-2024-70-3-389-402
Abstract:
Thanks to the works by R. V. Plykin and V. Z. Grines, the most studied expanding attractors are orientable attractors of codimension one of $A$-diffeomorphisms of multidimensional closed manifolds and one-dimensional attractors on closed surfaces. In this paper, we prove that there exist closed manifolds of any dimension, starting with three, admitting structurally stable diffeomorphisms and diffeomorphisms satisfying Smale's axiom A, with expanding attractors of arbitrary codimension. For some codimensions the type of manifolds is obtained.
Keywords:
expanding attractor, $A$-diffeomorphism, closed manifold, attracting neighborhood.
Citation:
E. V. Zhuzhoma, V. S. Medvedev, “On expanding attractors of arbitrary codimension”, CMFD, 70, no. 3, PFUR, M., 2024, 389–402; Journal of Mathematical Sciences, 287:4 (2024), 576–586
Linking options:
https://www.mathnet.ru/eng/cmfd547 https://www.mathnet.ru/eng/cmfd/v70/i3/p389
|
|