|
Contemporary Mathematics. Fundamental Directions, 2024, Volume 70, Issue 3, Pages 403–416 DOI: https://doi.org/10.22363/2413-3639-2024-70-3-403-416
(Mi cmfd548)
|
|
|
|
On two methods of determining $\eta$-invariants of elliptic boundary-value problems
K. N. Zhuikov, A. Yu. Savin RUDN University, Moscow, Russia
DOI:
https://doi.org/10.22363/2413-3639-2024-70-3-403-416
Abstract:
For a class of boundary-value problems with a parameter that are elliptic in the sense of Agranovich–Vishik, we establish the equality of the $\eta$-invariant defined in terms of the Melrose regularization and the spectral $\eta$-invariant of the Atiyah–Patodi–Singer type defined using the analytic continuation of the spectral $\eta$-function of the operator.
Keywords:
elliptic boundary-value problems with a parameter, $\eta$-invariants, spectral invariants, regularized traces.
Citation:
K. N. Zhuikov, A. Yu. Savin, “On two methods of determining $\eta$-invariants of elliptic boundary-value problems”, CMFD, 70, no. 3, PFUR, M., 2024, 403–416; Journal of Mathematical Sciences, 287:4 (2024), 587–600
Linking options:
https://www.mathnet.ru/eng/cmfd548 https://www.mathnet.ru/eng/cmfd/v70/i3/p403
|
|