Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2006, Volume 17, Pages 44–56 (Mi cmfd56)  

The exterior Plateau problem in higher codimension

F. Tomia, L. P. Jorgeb

a University of Heidelberg
b Universidade Federal do Ceará
References:
Abstract: We prove existence theorems for two-dimensional noncompact complete minimal surfaces in $\mathbb R^n$ of annular type, which span a given contour and have a finite total curvature end and prescribed asymptotical behavior. For arbitrary rectifiable Jordan curves, we show the existence of such surfaces with a flat end, i.e., within bounded distance from a 2-plane. For more restricted classes of curves, we prove the existence of minimal surfaces with higher multiplicity flat ends as well as of surfaces with polynomial-type nonflat ends.
English version:
Journal of Mathematical Sciences, 2008, Volume 149, Issue 6, Pages 1741–1754
DOI: https://doi.org/10.1007/s10958-008-0093-1
Bibliographic databases:
UDC: 519.972+517.987.1
Language: Russian
Citation: F. Tomi, L. P. Jorge, “The exterior Plateau problem in higher codimension”, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, CMFD, 17, PFUR, M., 2006, 44–56; Journal of Mathematical Sciences, 149:6 (2008), 1741–1754
Citation in format AMSBIB
\Bibitem{TomJor06}
\by F.~Tomi, L.~P.~Jorge
\paper The exterior Plateau problem in higher codimension
\inbook Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14--21, 2005). Part~3
\serial CMFD
\yr 2006
\vol 17
\pages 44--56
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd56}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2336458}
\transl
\jour Journal of Mathematical Sciences
\yr 2008
\vol 149
\issue 6
\pages 1741--1754
\crossref{https://doi.org/10.1007/s10958-008-0093-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-40549108254}
Linking options:
  • https://www.mathnet.ru/eng/cmfd56
  • https://www.mathnet.ru/eng/cmfd/v17/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025