Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2025, Volume 71, Issue 1, Pages 147–158
DOI: https://doi.org/10.22363/2413-3639-2025-71-1-147-158
(Mi cmfd579)
 

On globally smooth oscillating solutions of nonstrictly hyperbolic systems

O. S. Rozanova

Lomonosov Moscow State University, Moscow, Russia
References:
DOI: https://doi.org/10.22363/2413-3639-2025-71-1-147-158
Abstract: A class of nonstrictly hyperbolic systems of quasilinear equations with oscillatory solutions of the Cauchy problem, globally smooth in time in some open neighborhood of the zero stationary state, is found. For such systems, the period of oscillation of solutions does not depend on the initial point of the Lagrangian trajectory. The question of the possibility of constructing these systems in a physical context is also discussed, and nonrelativistic and relativistic equations of cold plasma are studied from this point of view.
Keywords: nonstrictly hyperbolic systems, quasilinear equations, Cauchy problem, oscillatory solutions, Lagrangian trajectory, cold plasma equations.
Funding agency Grant number
Russian Science Foundation 23-11-00056
Supported by grant RSF 23-11-00056 through RUDN University.
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: O. S. Rozanova, “On globally smooth oscillating solutions of nonstrictly hyperbolic systems”, Nonlocal and nonlinear problems, CMFD, 71, no. 1, PFUR, M., 2025, 147–158
Citation in format AMSBIB
\Bibitem{Roz25}
\by O.~S.~Rozanova
\paper On globally smooth oscillating solutions of nonstrictly hyperbolic systems
\inbook Nonlocal and nonlinear problems
\serial CMFD
\yr 2025
\vol 71
\issue 1
\pages 147--158
\publ PFUR
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd579}
\edn{https://elibrary.ru/VFGYMJ}
Linking options:
  • https://www.mathnet.ru/eng/cmfd579
  • https://www.mathnet.ru/eng/cmfd/v71/i1/p147
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025