Computer Optics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Computer Optics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Computer Optics, 2024, Volume 48, Issue 1, Pages 157–165
DOI: https://doi.org/10.18287/2412-6179-CO-1244
(Mi co1223)
 

This article is cited in 2 scientific papers (total in 2 papers)

NUMERICAL METHODS AND DATA ANALYSIS

Classification of benign and malignant solid breast lesions on the ultrasound images based on the textural features: the importance of the perifocal lesion area

A. A. Kolcheva, D. V. Pasynkovabc, I. A. Egoshinab, I. V. Klioushkind, O. O. Pasynkovab

a Kazan (Volga region) Federal University, Ministry of Education and Science of Russian Federation
b Mari State University, Ministry of Education and Science of Russian Federation
c Kazan (Volga region) Federal University, Ministry of Education and Science of Russian Federation
d Kazan State Medical Academy - Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education «Russian Medical Academy of Continuous Professional Education», Ministry of Healthcare of the Russian Federation, 420012, Kazan, Russia, Butlerova St. 36
References:
Abstract: The amount of ultrasound (US) breast exams continues to grow because of the wider endorsement of breast cancer screening programs. When a solid lesion is found during the US the primary task is to decide if it requires a biopsy. Therefore, our goal was to develop a noninvasive US grayscale image analysis for benign and malignant solid breast lesion differentiation. We used a dataset consisting of 105 ultrasound images with 50 benign and 55 malignant noncystic lesions. Features were extracted from the source image, the image of the gradient module after applying the Sobel filter, and the image after the Laplace filter. Subsequently, eight gray-level cooccurrence matrices (GLCM) were constructed for each lesion, and 13 Haralick textural features were calculated for each GLCM. Additionally, we computed the differences in feature values at different spatial shifts and the differences in feature values between the inner and outer areas of the lesion. The LASSO method was employed to determine the most significant features for classification. Finally, the lesion classification was carried out by various methods. The use of LASSO regression for feature selection enabled us to identify the most significant features for classification. Out of the 13 features selected by the LASSO method, four described the perilesional tissue, two represented the inner area of the lesion and five described the image of the gradient module. The final model achieved a sensitivity of 98%, specificity of 96%, and accuracy of 97%. Considering the perilesional area, Haralick feature differences, and the image of the gradient module can provide crucial parameters for accurate classification of US images. Features with a low AUC index (less than 0.6 in our case) can also be important for improving the quality of classification.
Keywords: breast ultrasound, solid lesion, benign lesion, malignant lesion, classification, feature selection
Funding agency Grant number
Russian Science Foundation 22-71-10070
Ministry of Science and Higher Education of the Russian Federation
The main results of sections "Materials and methods" and "Results" were obtained by D.V. Pasynkov and I.A. Egoshin with the support by Grant of Russian Science Foundation (Project 22-71-10070, https://rscf.ru/en/project/22-71-10070/). The authors are grateful to the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030) for the technical feasibility of using hardware and software.
Received: 23.10.2022
Accepted: 30.11.2022
Document Type: Article
Language: English
Citation: A. A. Kolchev, D. V. Pasynkov, I. A. Egoshin, I. V. Klioushkin, O. O. Pasynkova, “Classification of benign and malignant solid breast lesions on the ultrasound images based on the textural features: the importance of the perifocal lesion area”, Computer Optics, 48:1 (2024), 157–165
Citation in format AMSBIB
\Bibitem{KolPasEgo24}
\by A.~A.~Kolchev, D.~V.~Pasynkov, I.~A.~Egoshin, I.~V.~Klioushkin, O.~O.~Pasynkova
\paper Classification of benign and malignant solid breast lesions on the ultrasound images based on the textural features: the importance of the perifocal lesion area
\jour Computer Optics
\yr 2024
\vol 48
\issue 1
\pages 157--165
\mathnet{http://mi.mathnet.ru/co1223}
\crossref{https://doi.org/10.18287/2412-6179-CO-1244}
Linking options:
  • https://www.mathnet.ru/eng/co1223
  • https://www.mathnet.ru/eng/co/v48/i1/p157
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Computer Optics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025