Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2020, Volume 27, Issue 4, Pages 58–79
DOI: https://doi.org/10.33048/daio.2020.27.678
(Mi da1267)
 

This article is cited in 3 scientific papers (total in 3 papers)

Numerical methods for constructing suboptimal packings of nonconvex domains with curved boundary

P. D. Lebedev, V. N. Ushakov, A. A. Uspenskii

Krasovskii Institute of Mathematics and Mechanics, 16 Sofya Kovalevskaya Street, 620990 Yekaterinburg, Russia
Full-text PDF (479 kB) Citations (3)
References:
Abstract: We study the problem of constructing some optimal packings of simply-connected nonconvex plane domains with a union of congruent circles. We consider the minimization of the radius of circles if the number of the circles is fixed. Using subdifferential calculus, we develop theoretical methods for solution of the problem and propose an approach for constructing some suboptimal packings close to optimal. In the numerical algorithms, we use the iterative procedures and take into account mainly the location of the current center of a packing element, the centers of the nearest neighboring elements, and the points of the boundary of the domain. The algorithms use the same supergradient ascent scheme whose parameters can be adapted to the number of packing elements and the geometry of the domain. We present a new software package whose efficiency is demonstrated by several examples of numerical construction of some suboptimal packings of the nonconvex domains bounded by the Cassini oval, a hypotrochoid, and a cardioid. Illustr. 6, bibliogr. 37.
Keywords: packing, maximization, optimization, algorithm, numerical procedure, directional derivative, superdifferential, approximation, supergradient ascent.
Funding agency Grant number
Russian Science Foundation 19–11–00105
A part of the research by P. D. Lebedev P. and V. N. Ushakov is supported by the Russian Scientific Foundation (Project 19–11–00105).
Received: 27.12.2019
Revised: 27.07.2020
Accepted: 29.07.2020
English version:
Journal of Applied and Industrial Mathematics, 2020, Volume 14, Issue 4, Pages 681–692
DOI: https://doi.org/10.1134/S1990478920040079
Bibliographic databases:
Document Type: Article
UDC: 514.174.2
Language: Russian
Citation: P. D. Lebedev, V. N. Ushakov, A. A. Uspenskii, “Numerical methods for constructing suboptimal packings of nonconvex domains with curved boundary”, Diskretn. Anal. Issled. Oper., 27:4 (2020), 58–79; J. Appl. Industr. Math., 14:4 (2020), 681–692
Citation in format AMSBIB
\Bibitem{LebUshUsp20}
\by P.~D.~Lebedev, V.~N.~Ushakov, A.~A.~Uspenskii
\paper Numerical methods for constructing suboptimal~packings of~nonconvex domains with~curved~boundary
\jour Diskretn. Anal. Issled. Oper.
\yr 2020
\vol 27
\issue 4
\pages 58--79
\mathnet{http://mi.mathnet.ru/da1267}
\crossref{https://doi.org/10.33048/daio.2020.27.678}
\transl
\jour J. Appl. Industr. Math.
\yr 2020
\vol 14
\issue 4
\pages 681--692
\crossref{https://doi.org/10.1134/S1990478920040079}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100296449}
Linking options:
  • https://www.mathnet.ru/eng/da1267
  • https://www.mathnet.ru/eng/da/v27/i4/p58
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025