Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find







Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 4, Pages 104–123
DOI: https://doi.org/10.33048/daio.2022.29.747
(Mi da1311)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the existence of Agievich-primitive partitions

Yu. V. Tarannikovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, 1 Leninskie Gory, 119991 Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, 1 Leninskie Gory, 119991 Moscow, Russia
References:
DOI: https://doi.org/10.33048/daio.2022.29.747
Abstract: We prove that for any positive integer $m$ there exists the smallest positive integer $N=N_q(m)$ such that for $n>N$ there are no Agievich-primitive partitions of the space $\mathbf{F}_q^n$ into $q^m$ affine subspaces of dimension $n-m$. We give lower and upper bounds on the value $N_q(m)$ and prove that $N_q(2)=q+1$. Results of the same type for partitions into coordinate subspaces are established. Bibliogr. 16.
Keywords: affine subspace, partition of a space, bound, bent function, coordinate subspace, face, associative block design.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
The author is grateful to colleagues from Lomonosov Moscow State University and Sobolev Institute of Mathematics for meaningful discussions and to the anonymous referee for useful remarks that helped improving the quality of the paper.
Received: 11.07.2022
Revised: 28.07.2022
Accepted: 28.07.2022
English version:
Journal of Applied and Industrial Mathematics, 2022, Volume 16, Issue 4, Pages 809–820
DOI: https://doi.org/10.1134/S1990478922040202
Bibliographic databases:
Document Type: Article
UDC: 519.115.5
Language: Russian
Citation: Yu. V. Tarannikov, “On the existence of Agievich-primitive partitions”, Diskretn. Anal. Issled. Oper., 29:4 (2022), 104–123; J. Appl. Industr. Math., 16:4 (2022), 809–820
Citation in format AMSBIB
\Bibitem{Tar22}
\by Yu.~V.~Tarannikov
\paper On the existence of Agievich-primitive partitions
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 4
\pages 104--123
\mathnet{http://mi.mathnet.ru/da1311}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4523645}
\transl
\jour J. Appl. Industr. Math.
\yr 2022
\vol 16
\issue 4
\pages 809--820
\crossref{https://doi.org/10.1134/S1990478922040202}
Linking options:
  • https://www.mathnet.ru/eng/da1311
  • https://www.mathnet.ru/eng/da/v29/i4/p104
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :97
    References:66
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025