Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2023, Volume 30, Issue 1, Pages 110–129
DOI: https://doi.org/10.33048/daio.2023.30.745
(Mi da1318)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the number of minimum total dominating sets in trees

D. S. Taletskiiab

a Lobachevsky Nizhny Novgorod State University, 23 Gagarin Street, 603950 Nizhny Novgorod, Russia
b National Research University “Higher School of Economics”, 25/12 Bolshaya Pechyorskaya Street, 603155 Nizhny Novgorod, Russia
Full-text PDF (382 kB) Citations (1)
References:
DOI: https://doi.org/10.33048/daio.2023.30.745
Abstract: The minimum total dominating set (MTDS) of a graph is a vertex subset $D$ of minimum cardinality such that every vertex of the graph is adjacent to at least one vertex of $D.$ In this paper we obtain the sharp upper bound for the number of MTDS in the class of $n$-vertex $2$-caterpillars. We also show that for all $n \geq 1$ every $n$-vertex tree has less than $(\sqrt{2})^n$ MTDS. Illustr. 5, bibliogr. 6.
Keywords: extremal combinatorics, tree, $2$-caterpillar, minimum total dominating set.
Funding agency Grant number
Russian Science Foundation 21-11-00194
This research was supported by the Russian Science Foundation, project no. 21-11-00194.
Received: 16.06.2022
Revised: 04.10.2022
Accepted: 06.10.2022
English version:
Journal of Applied and Industrial Mathematics, 2023, Volume 17, Issue 1, Pages 213–224
DOI: https://doi.org/10.1134/S1990478923010234
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: D. S. Taletskii, “On the number of minimum total dominating sets in trees”, Diskretn. Anal. Issled. Oper., 30:1 (2023), 110–129; J. Appl. Industr. Math., 17:1 (2023), 213–224
Citation in format AMSBIB
\Bibitem{Tal23}
\by D.~S.~Taletskii
\paper On the number of minimum total dominating~sets~in~trees
\jour Diskretn. Anal. Issled. Oper.
\yr 2023
\vol 30
\issue 1
\pages 110--129
\mathnet{http://mi.mathnet.ru/da1318}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4569860}
\transl
\jour J. Appl. Industr. Math.
\yr 2023
\vol 17
\issue 1
\pages 213--224
\crossref{https://doi.org/10.1134/S1990478923010234}
Linking options:
  • https://www.mathnet.ru/eng/da1318
  • https://www.mathnet.ru/eng/da/v30/i1/p110
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025