|
|
Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 2003, Volume 10, Issue 4, Pages 31–69
(Mi da142)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$
A. D. Korshunov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Received: 13.09.2003
Citation:
A. D. Korshunov, “The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:4 (2003), 31–69
Linking options:
https://www.mathnet.ru/eng/da142 https://www.mathnet.ru/eng/da/v10/s1/i4/p31
|
|