Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 2001, Volume 8, Issue 1, Pages 77–93 (Mi da216)  

On the randomized complexity of functions that approximate a voting function

A. V. Chashkin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract: We consider the complexity of the realization of partial Boolean functions that approximate a Boolean function of $n$ variables, which is the Boolean voting function (by majority) $M(x_1,\dots,x_n)$. The functions are computed on a computer with arbitrary memory capacity and equipped with a random number generator. We show that the use of random number generators allows us to compute functions that roughly approximate $M(x_1,\dots,x_n)$ in constant time. In computing functions that are sufficiently close to $M(x_1,\dots,x_n)$ the use of random number generators does not allow the complexity of computation to be lowered more than a constant number of times.
Received: 22.06.2000
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: A. V. Chashkin, “On the randomized complexity of functions that approximate a voting function”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001), 77–93
Citation in format AMSBIB
\Bibitem{Cha01}
\by A.~V.~Chashkin
\paper On the randomized complexity of functions that approximate a~voting function
\jour Diskretn. Anal. Issled. Oper., Ser.~1
\yr 2001
\vol 8
\issue 1
\pages 77--93
\mathnet{http://mi.mathnet.ru/da216}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1846865}
\zmath{https://zbmath.org/?q=an:0973.68078}
Linking options:
  • https://www.mathnet.ru/eng/da216
  • https://www.mathnet.ru/eng/da/v8/s1/i1/p77
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025