|
|
Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 2001, Volume 8, Issue 4, Pages 3–8
(Mi da227)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
Perfect codes of complete rank with kernels of large dimensions
S. V. Avgustinovicha, F. I. Solov'evaa, O. Hedenb a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Royal Institute of Technology
Abstract:
We construct perfect codes of all admissible lengths $n>20^{10}-1$ of complete rank with kernels of all possible dimensions $K$ from $(n-1)/2$ to $U(n)$, which is the maximum possible. For every $k\in \{(n-1)/2,\dots,U(n)-2\}$, we construct such codes of length $n,31\leqslant n\leqslant 2^{10}-1$.
Received: 25.07.2001
Citation:
S. V. Avgustinovich, F. I. Solov'eva, O. Heden, “Perfect codes of complete rank with kernels of large dimensions”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001), 3–8
Linking options:
https://www.mathnet.ru/eng/da227 https://www.mathnet.ru/eng/da/v8/s1/i4/p3
|
|