Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2012, Volume 19, Issue 1, Pages 59–73 (Mi da677)  

This article is cited in 1 scientific paper (total in 1 paper)

Lower and upper bounds for the optimal makespan in the multimedia problem

P. A. Kononova

S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia
Full-text PDF (354 kB) Citations (1)
References:
Abstract: We consider a buffer-constrained flow shop problem. We introduce the notion of the restricted problem and show that the original and restricted problems are equivalent. We study two lower bounds for a global optimum. It is shown that the use of the restricted problem can improve the lower bounds. We develop a variable neighborhood search algorithm to obtain the upper bound with some well-known neighborhoods and a new large Kernighan–Lin neighborhood. Computational results show that the proposed method finds optimal solutions or near optimal solutions for difficult examples. Tab. 1, ill. 3, bibliogr. 10.
Keywords: scheduling, flowshop, local search.
Received: 05.04.2011
Revised: 14.07.2011
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: P. A. Kononova, “Lower and upper bounds for the optimal makespan in the multimedia problem”, Diskretn. Anal. Issled. Oper., 19:1 (2012), 59–73
Citation in format AMSBIB
\Bibitem{Kon12}
\by P.~A.~Kononova
\paper Lower and upper bounds for the optimal makespan in the multimedia problem
\jour Diskretn. Anal. Issled. Oper.
\yr 2012
\vol 19
\issue 1
\pages 59--73
\mathnet{http://mi.mathnet.ru/da677}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2961452}
Linking options:
  • https://www.mathnet.ru/eng/da677
  • https://www.mathnet.ru/eng/da/v19/i1/p59
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025