Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2014, Volume 21, Issue 3, Pages 76–81 (Mi da777)  

On edge muticoloring of unicyclic graphs

A. V. Pyatkinab

a S. L. Sobolev Institute of Mathematics, SB RAS, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogov St., 630090 Novosibirsk, Russia
References:
Abstract: A muticoloring of an edge weighted graph is an assignment of intervals to its edges such that the intervals of adjacent edges do not intersect in the inner points and the length of each interval is equal to the weight of the edge. The minimum length of the union of all intervals is the edge multichromatic number of the graph. The maximum weighted degree of the vertices (the sum of the weights of the edges incident to it) is its evident lower bound. The examples are known when the multichromatic number is 1.5 times as big as the lower bound. There is a conjecture that this ratio cannot excede 1.5. In the paper, this conjecture is proved for the class of unicyclic graphs. Bibliogr. 4.
Keywords: edge coloring, muticoloring, weighted graphs, intervals, open shop problem.
Received: 13.06.2013
Revised: 24.07.2013
English version:
Journal of Applied and Industrial Mathematics, 2014, Volume 8, Issue 3, Pages 362–365
DOI: https://doi.org/10.1134/S1990478914030089
Bibliographic databases:
Document Type: Article
UDC: 519.2+621.391
Language: Russian
Citation: A. V. Pyatkin, “On edge muticoloring of unicyclic graphs”, Diskretn. Anal. Issled. Oper., 21:3 (2014), 76–81; J. Appl. Industr. Math., 8:3 (2014), 362–365
Citation in format AMSBIB
\Bibitem{Pya14}
\by A.~V.~Pyatkin
\paper On edge muticoloring of unicyclic graphs
\jour Diskretn. Anal. Issled. Oper.
\yr 2014
\vol 21
\issue 3
\pages 76--81
\mathnet{http://mi.mathnet.ru/da777}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3242583}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 3
\pages 362--365
\crossref{https://doi.org/10.1134/S1990478914030089}
Linking options:
  • https://www.mathnet.ru/eng/da777
  • https://www.mathnet.ru/eng/da/v21/i3/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025