Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2018, Volume 25, Issue 1, Pages 5–24
DOI: https://doi.org/10.17377/daio.2018.25.570
(Mi da887)
 

This article is cited in 12 scientific papers (total in 12 papers)

On the skeleton of the polytope of pyramidal tours

V. A. Bondarenko, A. V. Nikolaev

Demidov Yaroslavl State University, 14 Sovetskaya St., 150003 Yaroslavl, Russia
References:
Abstract: We consider the skeleton of the polytope of pyramidal tours. A Hamiltonian tour is called pyramidal if the salesperson starts in city $1$, then visits some cities in increasing order of their numbers, reaches city $n$, and returns to city $1$ visiting the remaining cities in decreasing order. The polytope $\mathrm{PYR}(n)$ is defined as the convex hull of the characteristic vectors of all pyramidal tours in the complete graph $K_n$. The skeleton of $\mathrm{PYR}(n)$ is the graph whose vertex set is the vertex set of $\mathrm{PYR}(n)$ and the edge set is the set of geometric edges or one-dimensional faces of $\mathrm{PYR}(n)$. We describe the necessary and sufficient condition for the adjacency of vertices of the polytope $\mathrm{PYR}(n)$. On this basis we developed an algorithm to check the vertex adjacency with linear complexity. We establish that the diameter of the skeleton of $\mathrm{PYR}(n)$ equals $2$, and the asymptotically exact estimate of the clique number of the skeleton of $\mathrm{PYR}(n)$ is $\Theta(n^2)$. It is known that this value characterizes the time complexity in a broad class of algorithms based on linear comparisons. Illustr. 4, bibliogr. 23.
Keywords: pyramidal tour, $1$-skeleton, necessary and sufficient condition of adjacency, clique number, graph diameter.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation АААА-А16-116070610022-6
Received: 03.03.2017
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 1, Pages 9–18
DOI: https://doi.org/10.1134/S1990478918010027
Bibliographic databases:
Document Type: Article
UDC: 519.16+514.172.45
Language: Russian
Citation: V. A. Bondarenko, A. V. Nikolaev, “On the skeleton of the polytope of pyramidal tours”, Diskretn. Anal. Issled. Oper., 25:1 (2018), 5–24; J. Appl. Industr. Math., 12:1 (2018), 9–18
Citation in format AMSBIB
\Bibitem{BonNik18}
\by V.~A.~Bondarenko, A.~V.~Nikolaev
\paper On the skeleton of the polytope of pyramidal tours
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 1
\pages 5--24
\mathnet{http://mi.mathnet.ru/da887}
\crossref{https://doi.org/10.17377/daio.2018.25.570}
\elib{https://elibrary.ru/item.asp?id=32729776}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 1
\pages 9--18
\crossref{https://doi.org/10.1134/S1990478918010027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043288006}
Linking options:
  • https://www.mathnet.ru/eng/da887
  • https://www.mathnet.ru/eng/da/v25/i1/p5
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025