Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2018, Volume 25, Issue 1, Pages 42–74
DOI: https://doi.org/10.17377/daio.2018.25.587
(Mi da889)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the complexity of multivalued logic functions over some infinite basis

V. V. Kochergina, A. V. Mikhailovichb

a Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
b National Research University "Higher School of Economics", 20 Myasnitskaya St., 101000 Moscow, Russia
References:
Abstract: Under study is the complexity of the realization of $k$-valued logic functions $(k\ge3)$ by logic circuits in the infinite basis consisting of the Post negation (i.e., the function $(x+1)\bmod k$) and all monotone functions. The complexity of the circuit is the total number of elements of this circuit. For an arbitrary function $f$, we find the lower and upper bounds of complexity which differ from one another at most by $1$ and have the form $3\log_3(d(f)+1)+O(1)$, where $d(f)$ is the maximal number of the decrease of the value of $f$ taken over all increasing chains of tuples of values of the variables. We find the exact value of the corresponding Shannon function which characterizes the complexity of the most complex function of a given number of variables. Illustr. 4, bibliogr. 24.
Keywords: multivalued logic functions, logic circuit, infinite basis, inversion complexity.
Received: 04.08.2017
Revised: 06.10.2017
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 1, Pages 40–58
DOI: https://doi.org/10.1134/S1990478918010052
Bibliographic databases:
Document Type: Article
UDC: 519.714
Language: Russian
Citation: V. V. Kochergin, A. V. Mikhailovich, “On the complexity of multivalued logic functions over some infinite basis”, Diskretn. Anal. Issled. Oper., 25:1 (2018), 42–74; J. Appl. Industr. Math., 12:1 (2018), 40–58
Citation in format AMSBIB
\Bibitem{KocMik18}
\by V.~V.~Kochergin, A.~V.~Mikhailovich
\paper On the complexity of multivalued logic functions over some infinite basis
\jour Diskretn. Anal. Issled. Oper.
\yr 2018
\vol 25
\issue 1
\pages 42--74
\mathnet{http://mi.mathnet.ru/da889}
\crossref{https://doi.org/10.17377/daio.2018.25.587}
\elib{https://elibrary.ru/item.asp?id=32729778}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 1
\pages 40--58
\crossref{https://doi.org/10.1134/S1990478918010052}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043246271}
Linking options:
  • https://www.mathnet.ru/eng/da889
  • https://www.mathnet.ru/eng/da/v25/i1/p42
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :79
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025