Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 86–89
DOI: https://doi.org/10.31857/S2686954320040049
(Mi danma100)
 

This article is cited in 2 scientific papers (total in 2 papers)

CONTROL PROCESSES

Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$

V. I. Berdyshev

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
Full-text PDF (211 kB) Citations (2)
References:
Abstract: For the problem of an autonomous object moving under hostile observation, the observer’s positions are characterized in which the object following any route can choose a speed mode that allows observation evasion, and positions guaranteeing that the observer is able to track the object on the initial part of the trajectory and only on it are described.
Keywords: navigation, autonomous vehicle, trajectory, observer.
Received: 06.05.2020
Revised: 18.05.2020
Accepted: 20.05.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 334–336
DOI: https://doi.org/10.1134/S1064562420040043
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: V. I. Berdyshev, “Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 86–89; Dokl. Math., 102:1 (2020), 334–336
Citation in format AMSBIB
\Bibitem{Ber20}
\by V.~I.~Berdyshev
\paper Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 86--89
\mathnet{http://mi.mathnet.ru/danma100}
\crossref{https://doi.org/10.31857/S2686954320040049}
\zmath{https://zbmath.org/?q=an:1478.93443}
\elib{https://elibrary.ru/item.asp?id=43795352}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 334--336
\crossref{https://doi.org/10.1134/S1064562420040043}
Linking options:
  • https://www.mathnet.ru/eng/danma100
  • https://www.mathnet.ru/eng/danma/v493/p86
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025