|
MATHEMATICS
On the 4-spectrum of first-order properties of random graphs
M. E. Zhukovskiiabcd, A. D. Matushkina, Yu. N. Yarovikovae a Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
b Russian Academy of National Economy and Public Administration under the President of the Russian Federation, Moscow, Russia
c Caucasus Mathematical Center, Adyghe State University, Maykop, Republic of Adygea, Russia
d Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
e Artificial Intelligence Research Institute, Moscow, Russia
Abstract:
A $k$-spectrum is a set of all positive $\alpha$ such that the random binomial graph $G(n,n^{-\alpha})$ does not obey the zero–one law for first-order formulas with a quantifier depth at most $k$. We have proved that the minimal $k$ such that the $k$-spectrum is infinite equals 5.
Keywords:
first-order logic, random binomial graph, zero–one law, spectrum of formula, Ehrenfeucht–Fraïssé game.
Citation:
M. E. Zhukovskii, A. D. Matushkin, Yu. N. Yarovikov, “On the 4-spectrum of first-order properties of random graphs”, Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021), 31–34; Dokl. Math., 104:2 (2021), 247–249
Linking options:
https://www.mathnet.ru/eng/danma200 https://www.mathnet.ru/eng/danma/v500/p31
|
|