|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation
A. B. Aleksandrova, V. V. Pellerab a St. Petersburg Departmen of Steklov Mathematical Institute, St. Petersburg, Russia
b Saint Petersburg State University
Abstract:
For a pair $(A,B)$ of not necessarily bounded and not necessarily commuting self-adjoint operators and for a function $f$ on the Euclidean space $\mathbb{R}^2$ that belongs to the inhomogeneous Besov class $B^1_{\infty,1}(\mathbb{R}^2)$, we define the function $f(A,B)$ of these operators as a densely defined operator. We consider the problem of estimating the functions $f(A,B)$ under perturbations of the pair $(A,B)$. It is established that if $1\le p\le2$, and $(A_1,B_1)$ and $(A_2,B_2)$ are pairs of not necessarily bounded and not necessarily commuting self-adjoint operators such that the operators $A_1-A_2$ and $B_1-B_2$ belong to the Schatten–von Neumann class $\mathrm{S}_p$ with $p\in[1,2]$ and $f\in B^1_{\infty,1}(\mathbb{R}^2)$, then the following Lipschitz type estimate holds: $\|f(A_1,B_1)-f(A_2,B_2)\|_{\mathrm{S}_p}\le\operatorname{const}\|f\|_{B^1_{\infty,1}}\max\{\|A_1-A_2\|_{S_p},\|B_1-B_2\|_{\mathrm{S}_p}\}$.
Keywords:
unbounded self-adjoint operators, Schatten–von Neumann classes, Besov classes, double operator integrals, triple operator integrals, Haagerup tensor products, functions of pairs of noncommuting self-adjoint operators.
Citation:
A. B. Aleksandrov, V. V. Peller, “Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 5–9; Dokl. Math., 106:3 (2022), 407–411
Linking options:
https://www.mathnet.ru/eng/danma309 https://www.mathnet.ru/eng/danma/v507/p5
|
| Statistics & downloads: |
| Abstract page: | 240 | | References: | 52 |
|