Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2022, Volume 507, Pages 5–9
DOI: https://doi.org/10.31857/S2686954322600446
(Mi danma309)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation

A. B. Aleksandrova, V. V. Pellerab

a St. Petersburg Departmen of Steklov Mathematical Institute, St. Petersburg, Russia
b Saint Petersburg State University
References:
Abstract: For a pair $(A,B)$ of not necessarily bounded and not necessarily commuting self-adjoint operators and for a function $f$ on the Euclidean space $\mathbb{R}^2$ that belongs to the inhomogeneous Besov class $B^1_{\infty,1}(\mathbb{R}^2)$, we define the function $f(A,B)$ of these operators as a densely defined operator. We consider the problem of estimating the functions $f(A,B)$ under perturbations of the pair $(A,B)$. It is established that if $1\le p\le2$, and $(A_1,B_1)$ and $(A_2,B_2)$ are pairs of not necessarily bounded and not necessarily commuting self-adjoint operators such that the operators $A_1-A_2$ and $B_1-B_2$ belong to the Schatten–von Neumann class $\mathrm{S}_p$ with $p\in[1,2]$ and $f\in B^1_{\infty,1}(\mathbb{R}^2)$, then the following Lipschitz type estimate holds: $\|f(A_1,B_1)-f(A_2,B_2)\|_{\mathrm{S}_p}\le\operatorname{const}\|f\|_{B^1_{\infty,1}}\max\{\|A_1-A_2\|_{S_p},\|B_1-B_2\|_{\mathrm{S}_p}\}$.
Keywords: unbounded self-adjoint operators, Schatten–von Neumann classes, Besov classes, double operator integrals, triple operator integrals, Haagerup tensor products, functions of pairs of noncommuting self-adjoint operators.
Funding agency Grant number
Russian Science Foundation 18-11-00053
20-61-46016
Ministry of Education and Science of the Russian Federation 075-15-2021-602
The research on Sect. 2 is supported by Russian Science Foundation (grant no. 18-11-00053). The research on Sect. 3 is supported by Russian Science Foundation (grant no. 20-61-46016). The remaining results are supported by a grant of the Government of the Russian Federation for the state support of scientific research, carried out under the supervision of leading scientists, agreement no. 075-15-2021-602.
Presented: S. V. Kislyakov
Received: 28.06.2022
Revised: 14.07.2022
Accepted: 21.09.2022
English version:
Doklady Mathematics, 2022, Volume 106, Issue 3, Pages 407–411
DOI: https://doi.org/10.1134/S1064562422700041
Bibliographic databases:
Document Type: Article
UDC: 517.983.28
Language: Russian
Citation: A. B. Aleksandrov, V. V. Peller, “Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 5–9; Dokl. Math., 106:3 (2022), 407–411
Citation in format AMSBIB
\Bibitem{AlePel22}
\by A.~B.~Aleksandrov, V.~V.~Peller
\paper Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 507
\pages 5--9
\mathnet{http://mi.mathnet.ru/danma309}
\crossref{https://doi.org/10.31857/S2686954322600446}
\elib{https://elibrary.ru/item.asp?id=49991275}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 3
\pages 407--411
\crossref{https://doi.org/10.1134/S1064562422700041}
Linking options:
  • https://www.mathnet.ru/eng/danma309
  • https://www.mathnet.ru/eng/danma/v507/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:240
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026