Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 8–12
DOI: https://doi.org/10.31857/S2686954323700078
(Mi danma353)
 

MATHEMATICS

Estimates of Alexandrov’s $n$-width of a compact set for some infinitely differentiable periodic functions

V. N. Belykh

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: In this paper, we obtain two-sided estimates for the Alexandrov $n$-width of a compact set of infinitely differentiable periodic functions that are boundedly embedded in the space of continuous functions on the unit circle.
Keywords: compact set, $n$-width, infinitely differentiable functions, Gevrey class.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0008
This work was carried out within the state assignment at Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, project FWNF-2022-0008.
Presented: V. I. Berdyshev
Received: 10.07.2022
Revised: 12.11.2022
Accepted: 21.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 4–8
DOI: https://doi.org/10.1134/S1064562423700394
Bibliographic databases:
Document Type: Article
UDC: 519.6+515.127
Language: Russian
Citation: V. N. Belykh, “Estimates of Alexandrov’s $n$-width of a compact set for some infinitely differentiable periodic functions”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 8–12; Dokl. Math., 107:1 (2023), 4–8
Citation in format AMSBIB
\Bibitem{Bel23}
\by V.~N.~Belykh
\paper Estimates of Alexandrov’s $n$-width of a compact set for some infinitely differentiable periodic functions
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 8--12
\mathnet{http://mi.mathnet.ru/danma353}
\crossref{https://doi.org/10.31857/S2686954323700078}
\elib{https://elibrary.ru/item.asp?id=50436195}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 4--8
\crossref{https://doi.org/10.1134/S1064562423700394}
Linking options:
  • https://www.mathnet.ru/eng/danma353
  • https://www.mathnet.ru/eng/danma/v509/p8
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025