Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 509, Pages 13–16
DOI: https://doi.org/10.31857/S2686954322600665
(Mi danma354)
 

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Solvability of the initial-boundary value problem for the Kelvin–Voigt fluid motion model with variable density

V. G. Zvyagin, M. V. Turbin

Voronezh State University, Voronezh, Russia
Full-text PDF Citations (4)
References:
Abstract: The solvability of the initial-boundary value problem for the Kelvin–Voigt fluid motion model with a variable density is investigated. First, using the Laplace transform, from the rheological relation for the Kelvin–Voigt fluid motion model and the fluid motion equation in the Cauchy form, we derive a system of equations that describes the fluid motion in the Kelvin–Voigt model with a variable density. For the resulting system of equations, an initial-boundary value problem is posed, a definition of its weak solution is given, and its existence is proved. The proof is based on an approximation-topological approach to the study of fluid dynamic problems. Namely, the original problem is approximated by another one, whose solvability is proved using a version of the Leray–Schauder theorem. Then, on the basis of a priori estimates, it is proved that from the sequence of solutions of the approximation problem, it is possible to extract a subsequence that weakly converges to the solution of the original problem.
Keywords: fluid dynamics, fluid with variable density, Kelvin–Voigt model, weak solution, existence theorem.
Funding agency Grant number
Russian Science Foundation 22-11-00103
This work was supported by the Russian Science Foundation, grant no. 22-11-00103, https://rscf.ru/en/project/22-11-00103/.
Presented: B. S. Kashin
Received: 14.11.2022
Revised: 25.11.2022
Accepted: 11.12.2022
English version:
Doklady Mathematics, 2023, Volume 107, Issue 1, Pages 9–11
DOI: https://doi.org/10.1134/S1064562423700552
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. G. Zvyagin, M. V. Turbin, “Solvability of the initial-boundary value problem for the Kelvin–Voigt fluid motion model with variable density”, Dokl. RAN. Math. Inf. Proc. Upr., 509 (2023), 13–16; Dokl. Math., 107:1 (2023), 9–11
Citation in format AMSBIB
\Bibitem{ZvyTur23}
\by V.~G.~Zvyagin, M.~V.~Turbin
\paper Solvability of the initial-boundary value problem for the Kelvin--Voigt fluid motion model with variable density
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 509
\pages 13--16
\mathnet{http://mi.mathnet.ru/danma354}
\crossref{https://doi.org/10.31857/S2686954322600665}
\elib{https://elibrary.ru/item.asp?id=50436196}
\transl
\jour Dokl. Math.
\yr 2023
\vol 107
\issue 1
\pages 9--11
\crossref{https://doi.org/10.1134/S1064562423700552}
Linking options:
  • https://www.mathnet.ru/eng/danma354
  • https://www.mathnet.ru/eng/danma/v509/p13
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025