Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 512, Pages 5–9
DOI: https://doi.org/10.31857/S2686954323700236
(Mi danma391)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the application of the solution of the degenerate nonlinear Burgers equation with a small parameter and the theory of $p$-regularity

B. Medaka, A. A. Tret'yakovabcd

a Siedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences, Siedlce, Poland
b Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
c System Researche Institute, Polish Academy of Sciences, Warsaw, Poland
d Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
Full-text PDF Citations (1)
References:
Abstract: The article discusses various modifications of the nonlinear Burgers equation with small parameter and degenerate in solution of the form
$$ F(u,\varepsilon)\equiv u_t=u_{xx}+uu_x+\varepsilon u^2-f(x,t)=0,\qquad (1) $$
where $F\colon \Omega\to C([0,\pi]\times [0,T])$, $T>0$, $\Omega=C^2([0,\pi]\times[0,T])\mathbb R$ and $u(0,t)=u(\pi,t)=0$, $u(x,0)=\varphi(x)$, $f(x,t)\in C([0,\pi]\times[0,T])$, $\varphi(x)\in C[0,\pi]$. We will be interested in the most important in applications case of a small parameter $\varepsilon$ with oscillating initial conditions of the form $\varphi(x)=k\sin{x}$, where $k$ – some, generally speaking, constant depending on $\varepsilon$, and study the question of the existence of a solution in neighborhood of the trivial $(u*,\varepsilon*)=(0,0)$, which corresponds to $k=k*=0$ and at what initial under certain conditions on the values of $k$, it is possible to construct an analytical approximation of this solution for small $\varepsilon$. We will look for a solution in the traditional way of separation of variables on a subspace of functions of the form $u(x,t)=v(t)u(x)$, where $v(t)=ce^{-t}$, $u(x)\in C^2([0,\pi])$. In this case, the problem under consideration is degenerate at the point $(u*,\varepsilon*)=(0,0)$, since $\operatorname{Im} F'_u(u*,\varepsilon*)\neq Z=C([0,\pi]\times[0,T])$. This follows from the Sturm–Liouville theory. To achieve our goals, we apply the apparatus of $p$-regularity theory [6, 7, 15, 16] and show that the mapping $F(u,\varepsilon)$ is $3$-regular at the point $(u*,\varepsilon*)=(0,0)$, т.е. $p=3$.
Funding agency Grant number
Russian Science Foundation 21-71-30005
Ministry of Science and Higher Education of the Russian Federation
Ministry of Science and Higher Education, Poland 144/23/B
This work was supported in part by the Russian Science Foundation (project no. 21-71-30005, pp. 1–9), by the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences (research budget topic), and by the Ministry of Science and Education of Poland (scientific topic no. 144/23/B).
Presented: Yu. G. Evtushenko
Received: 02.02.2022
Revised: 27.10.2022
Accepted: 05.05.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue 1, Pages 243–247
DOI: https://doi.org/10.1134/S1064562423700916
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. Medak, A. A. Tret'yakov, “On the application of the solution of the degenerate nonlinear Burgers equation with a small parameter and the theory of $p$-regularity”, Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 5–9; Dokl. Math., 108:1 (2023), 243–247
Citation in format AMSBIB
\Bibitem{MedTre23}
\by B.~Medak, A.~A.~Tret'yakov
\paper On the application of the solution of the degenerate nonlinear Burgers equation with a small parameter and the theory of $p$-regularity
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 512
\pages 5--9
\mathnet{http://mi.mathnet.ru/danma391}
\crossref{https://doi.org/10.31857/S2686954323700236}
\elib{https://elibrary.ru/item.asp?id=54538795}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue 1
\pages 243--247
\crossref{https://doi.org/10.1134/S1064562423700916}
Linking options:
  • https://www.mathnet.ru/eng/danma391
  • https://www.mathnet.ru/eng/danma/v512/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025