|
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 395–416 DOI: https://doi.org/10.31857/S2686954323601859
(Mi danma483)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES
No two users are alike: Generating audiences with neural clustering for temporal point processes
V. Zhuzhela, V. Grabar'a, N. Kaploukhayaa, R. Rivera-Castrobca, L. Mironovaa, A. Zaytseva, E. Burnaeva a Skolkovo Institute of Science and Technology, Moscow, Russia
b Center for Digital Technology and Management, Munich, Germany
c Choco Communications, Berlin, Germany
DOI:
https://doi.org/10.31857/S2686954323601859
Keywords:
applications, clustering, unsupervised, temporal point processes.
Citation:
V. Zhuzhel, V. Grabar', N. Kaploukhaya, R. Rivera-Castro, L. Mironova, A. Zaytsev, E. Burnaev, “No two users are alike: Generating audiences with neural clustering for temporal point processes”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 395–416; Dokl. Math., 108:suppl. 2 (2023), S511–S528
Linking options:
https://www.mathnet.ru/eng/danma483 https://www.mathnet.ru/eng/danma/v514/i2/p395
|
|