Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 395–416
DOI: https://doi.org/10.31857/S2686954323601859
(Mi danma483)
 

This article is cited in 1 scientific paper (total in 1 paper)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

No two users are alike: Generating audiences with neural clustering for temporal point processes

V. Zhuzhela, V. Grabar'a, N. Kaploukhayaa, R. Rivera-Castrobca, L. Mironovaa, A. Zaytseva, E. Burnaeva

a Skolkovo Institute of Science and Technology, Moscow, Russia
b Center for Digital Technology and Management, Munich, Germany
c Choco Communications, Berlin, Germany
Citations (1)
References:
DOI: https://doi.org/10.31857/S2686954323601859
Abstract: Identifying the right user to target is a common problem for different Internet platforms. Although numerous systems address this task, they are heavily tailored for specific environments and settings. It is challenging for practitioners to apply these findings to their problems. The reason is that most systems are designed for settings with millions of highly active users and with personal information, as is the case in social networks or other services with high virality. There exists a gap in the literature for systems that are for medium-sized data and where the only data available are the event sequences of a user. It motivates us to present Look-A-Liker (LAL) as an unsupervised deep cluster system. It uses temporal point processes to identify similar users for targeting tasks. We use data from the leading Internet marketplace for the gastronomic sector for experiments. LAL generalizes beyond proprietary data. Using event sequences of users, it is possible to obtain state-of-the-art results compared to novel methods such as Transformer architectures and multimodal learning. Our approach produces the up to 20% ROC AUC score improvement on real-world datasets from 0.803 to 0.959. Although LAL focuses on hundreds of thousands of sequences, we show how it quickly expands to millions of user sequences. We provide a fully reproducible implementation with code and datasets in https://github.com/adasegroup/sequence-clusterers.
Keywords: applications, clustering, unsupervised, temporal point processes.
Funding agency Grant number
Skolkovo Institute of Science and Technology 70-2021-00145
The work of V. Grabar, A. Zaytsev, and E. Burnaev was supported by the Analytical center at Skoltech (subsidy agreement 000000D730321P5Q0002, Grant no. 70-2021-00145 02.11.2021).
Presented: A. I. Avetisyan
Received: 01.09.2023
Revised: 15.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S511–S528
DOI: https://doi.org/10.1134/S1064562423701661
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. Zhuzhel, V. Grabar', N. Kaploukhaya, R. Rivera-Castro, L. Mironova, A. Zaytsev, E. Burnaev, “No two users are alike: Generating audiences with neural clustering for temporal point processes”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 395–416; Dokl. Math., 108:suppl. 2 (2023), S511–S528
Citation in format AMSBIB
\Bibitem{ZhuGraKap23}
\by V.~Zhuzhel, V.~Grabar', N.~Kaploukhaya, R.~Rivera-Castro, L.~Mironova, A.~Zaytsev, E.~Burnaev
\paper No two users are alike: Generating audiences with neural clustering for temporal point processes
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 395--416
\mathnet{http://mi.mathnet.ru/danma483}
\elib{https://elibrary.ru/item.asp?id=56717870}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S511--S528
\crossref{https://doi.org/10.1134/S1064562423701661}
Linking options:
  • https://www.mathnet.ru/eng/danma483
  • https://www.mathnet.ru/eng/danma/v514/i2/p395
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025