|
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 417–430 DOI: https://doi.org/10.31857/S2686954323601525
(Mi danma484)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES
ESGify: Automated classification of environmental, social and corporate governance risks
A. Kazakova, S. Denisovaa, I. Barsolaa, E. Kaluginaa, I. Molchanovaa, I. Egorova, A. Kosterinaa, E. Tereshchenkoa, L. Shutikhinaa, I. Doroshchenkoa, N. Sotiriadia, S. Budennyyab a Sber AI Lab, Moscow, Russian Federation
b Artificial Intelligence Research Institute, Moscow, Russian Federation
DOI:
https://doi.org/10.31857/S2686954323601525
Citation:
A. Kazakov, S. Denisova, I. Barsola, E. Kalugina, I. Molchanova, I. Egorov, A. Kosterina, E. Tereshchenko, L. Shutikhina, I. Doroshchenko, N. Sotiriadi, S. Budennyy, “ESGify: Automated classification of environmental, social and corporate governance risks”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 417–430; Dokl. Math., 108:suppl. 2 (2023), S529–S540
Linking options:
https://www.mathnet.ru/eng/danma484 https://www.mathnet.ru/eng/danma/v514/i2/p417
|
|