Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 516, Pages 31–37
DOI: https://doi.org/10.31857/S2686954324020061
(Mi danma510)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On kernels of invariant Schrödinger operators with point interactions. Grinevich–Novikov conjecture

M. M. Malamuda, V. V. Marchenkob

a Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow, Russia
b Bauman Moscow State Technical University, Moscow, Russia
Full-text PDF Citations (2)
Abstract: According to Berezin and Faddeev, a Schrödinger operator with point interactions
$$ -\Delta+\sum\limits_{j=1}^m\alpha_j\delta(x-x_j), \, X=\{x_j\}_1^m\subset\mathbb R^3, \, \{\alpha_j\}_1^m\subset\mathbb R, $$
is any self-adjoint extension of the restriction $-\Delta_X$ of the Laplace operator $-\Delta$ to the subset $\{f\in H^2(\mathbb R^3): f(x_j)=0,1\leq j\leq m\}$ of the Sobolev space $H^2(\mathbb R^3)$. The present paper studies the extensions (realizations) invariant under the symmetry group of the vertex set $X=\{x_j\}_1^m$ of a regular $m$-gon. Such realizations $H_B$ are parametrized by special circulant matrices $B\in\mathbb C^{m\times m}$. We describe all such realizations with non-trivial kernels. А Grinevich–Novikov conjecture on simplicity of the zero eigenvalue of the realization $H_B$ with a scalar matrix $B=\alpha I$ and an even $m$ is proved. It is shown that for an odd $m$ non-trivial kernels of all realizations $H_B$ with scalar $B=\alpha I$ are two-dimensional. Besides, for arbitrary realizations ($B\neq \alpha I$) the estimate $\operatorname{dim}(\operatorname{ker} H_B)\leq m-1$ is proved, and all invariant realizations of the maximal dimension $\operatorname{dim}(\operatorname{ker} H_B)=m-1$ are described. One of them is the Krein realization, which is the minimal positive extension of the operator $-\Delta_X$.
Keywords: Schrödinger operators with point interactions, invariant operators, Krein realization, multiplicity of zero eigenvalue.
Funding agency Grant number
Russian Science Foundation 23-11-00153
The first author’s research was carried out by grant of the Russian Science Foundation no. 23-11-00153.
Presented: I. A. Taimanov
Received: 25.01.2024
Revised: 14.02.2024
Accepted: 16.02.2024
English version:
Doklady Mathematics, 2024, Volume 109, Issue 2, Pages 125–129
DOI: https://doi.org/10.1134/S1064562424701904
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: M. M. Malamud, V. V. Marchenko, “On kernels of invariant Schrödinger operators with point interactions. Grinevich–Novikov conjecture”, Dokl. RAN. Math. Inf. Proc. Upr., 516 (2024), 31–37; Dokl. Math., 109:2 (2024), 125–129
Citation in format AMSBIB
\Bibitem{MalMar24}
\by M.~M.~Malamud, V.~V.~Marchenko
\paper On kernels of invariant Schr\"odinger operators with point interactions. Grinevich--Novikov conjecture
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 516
\pages 31--37
\mathnet{http://mi.mathnet.ru/danma510}
\crossref{https://doi.org/10.31857/S2686954324020061}
\elib{https://elibrary.ru/item.asp?id=68623162}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 2
\pages 125--129
\crossref{https://doi.org/10.1134/S1064562424701904}
Linking options:
  • https://www.mathnet.ru/eng/danma510
  • https://www.mathnet.ru/eng/danma/v516/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025