Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 516, Pages 59–64
DOI: https://doi.org/10.31857/S2686954324020093
(Mi danma513)
 

MATHEMATICS

Continued fractions in hyperelliptic fields with an arbitrarily long period

V. P. Platonovab, G.V. Fedorovac

a Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c University of Science and Technology "Sirius", Sochi
Abstract: The article proves the following statement: in any hyperelliptic field $L$ defined over the field of algebraic numbers $K$ which having non-trivial units of the ring of integer elements of the field $L$, there is an element for which the period length of the continued fraction is greater any pre-given number.
Keywords: hyperelliptic field, fundamental units, unimodular transformations, period length.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FNEF-2024-0001
This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state assignment, project no. FNEF-2024-0001.
Received: 15.02.2024
Revised: 25.03.2024
Accepted: 25.03.2024
English version:
Doklady Mathematics, 2024, Volume 109, Issue 2, Pages 147–151
DOI: https://doi.org/10.1134/S1064562424701928
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: V. P. Platonov, G.V. Fedorov, “Continued fractions in hyperelliptic fields with an arbitrarily long period”, Dokl. RAN. Math. Inf. Proc. Upr., 516 (2024), 59–64; Dokl. Math., 109:2 (2024), 147–151
Citation in format AMSBIB
\Bibitem{PlaFed24}
\by V.~P.~Platonov, G.V.~Fedorov
\paper Continued fractions in hyperelliptic fields with an arbitrarily long period
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 516
\pages 59--64
\mathnet{http://mi.mathnet.ru/danma513}
\crossref{https://doi.org/10.31857/S2686954324020093}
\elib{https://elibrary.ru/item.asp?id=68623165}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 2
\pages 147--151
\crossref{https://doi.org/10.1134/S1064562424701928}
Linking options:
  • https://www.mathnet.ru/eng/danma513
  • https://www.mathnet.ru/eng/danma/v516/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025