Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 517, Pages 74–78
DOI: https://doi.org/10.31857/S2686954324030125
(Mi danma533)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Zeros of conic functions, fixed points, and coincidences

T. N. Fomenkoab

a Lomonosov Moscow State University, Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
Full-text PDF Citations (2)
Abstract: The concept of a conic function with operator coefficients on a conic metric space is introduced. A zero existence theorem is proved for such functions. On this basis, a fixed point theorem for a multivalued self-mapping of a conic metric space is obtained, which generalizes the recent fixed point theorem of E.S. Zhukovskiy and E.A. Panasenko for a contracting multivalued mapping of a conic metric space with an operator contracting coefficient. Coincidence theorems for two multivalued mappings of conic metric spaces are obtained, which generalize the author’s previous results on coincidences of two multivalued mappings of metric spaces.
Keywords: conic metric, conic function, multivalued mapping, fixed point, coincidence point.
Presented: S. V. Matveev
Received: 14.05.2024
Revised: 28.05.2024
Accepted: 06.06.2024
English version:
Doklady Mathematics, 2024, Volume 109, Issue 3, Pages 252–255
DOI: https://doi.org/10.1134/S1064562424601306
Bibliographic databases:
Document Type: Article
UDC: 515.124+512.562+515.126.4+515.126.83
Language: Russian
Citation: T. N. Fomenko, “Zeros of conic functions, fixed points, and coincidences”, Dokl. RAN. Math. Inf. Proc. Upr., 517 (2024), 74–78; Dokl. Math., 109:3 (2024), 252–255
Citation in format AMSBIB
\Bibitem{Fom24}
\by T.~N.~Fomenko
\paper Zeros of conic functions, fixed points, and coincidences
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 517
\pages 74--78
\mathnet{http://mi.mathnet.ru/danma533}
\crossref{https://doi.org/10.31857/S2686954324030125}
\elib{https://elibrary.ru/item.asp?id=69204692}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 3
\pages 252--255
\crossref{https://doi.org/10.1134/S1064562424601306}
Linking options:
  • https://www.mathnet.ru/eng/danma533
  • https://www.mathnet.ru/eng/danma/v517/p74
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025