Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 518, Pages 22–28
DOI: https://doi.org/10.31857/S2686954324040045
(Mi danma546)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On tautochronic motions

A. G. Petrov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF Citations (1)
Abstract: Linear motion of a point particle influenced by two forces varying according to power laws with arbitrary exponents is considered. Exponents are found for which the governing equation is nonlinear and the oscillation period is independent of the initial data (tautochronic motion). The equations are brought to Hamiltonian form, and the Hamiltonian normal form method is used to prove that there exist only two variants of tautochronic motion, namely, when the exponents are equal to 1 and -3 (variant 1) and when the exponents are equal to 0 and -1/2 (variant 2). For the other power laws, the motion of the point particle is not tautochronic. The Hamiltonian normal form of tautochronic motion is the Hamiltonian of a linear oscillator. The canonical transformation reducing the original Hamiltonian to normal form is expressed in terms of elementary functions. Hamiltonians of tautochronic motions can be used to test computer codes for calculating Hamiltonian normal forms.
Keywords: tautochronic motion, periodic solution, Hamiltonian system, Hamiltonian normal form method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 124012500443-0
This work was performed in the framework of the state assignment no. 124012500443-0.
Presented: V. F. Zhuravlev
Received: 23.04.2024
Revised: 20.05.2024
Accepted: 16.07.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue 1, Pages 312–317
DOI: https://doi.org/10.1134/S106456242470220X
Bibliographic databases:
Document Type: Article
UDC: 514.85
Language: Russian
Citation: A. G. Petrov, “On tautochronic motions”, Dokl. RAN. Math. Inf. Proc. Upr., 518 (2024), 22–28; Dokl. Math., 110:1 (2024), 312–317
Citation in format AMSBIB
\Bibitem{Pet24}
\by A.~G.~Petrov
\paper On tautochronic motions
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 518
\pages 22--28
\mathnet{http://mi.mathnet.ru/danma546}
\crossref{https://doi.org/10.31857/S2686954324040045}
\elib{https://elibrary.ru/item.asp?id=74176075}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue 1
\pages 312--317
\crossref{https://doi.org/10.1134/S106456242470220X}
Linking options:
  • https://www.mathnet.ru/eng/danma546
  • https://www.mathnet.ru/eng/danma/v518/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025