Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 518, Pages 65–74
DOI: https://doi.org/10.31857/S2686954324040109
(Mi danma552)
 

MATHEMATICS

On the accuracy of calculating invariants in centered rarefaction waves and in their influence area

V. V. Ostapenko, E. I. Polunina, N. A. Khandeeva

Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Abstract: We perform a comparative analysis of the accuracy of second-order TVD (Total Variation Diminishing), third-order RBM (Rusanov–Burstein–Mirin), and fifth-order in space and third-order in time A-WENO (Alternative Weighted Essentially Non-Oscillatory) difference schemes for solving a special Cauchy problem for shallow water equations with discontinuous initial data. The exact solution of this problem contains a centered rarefaction wave, but does not contain a shock wave. It is shown that in the centered rarefaction wave and its influence area, the solutions of these three schemes converge with different orders to different invariants of the exact solution. This leads to a decrease in the accuracy of these schemes when they used to calculate the vector of base variables of the considered Cauchy problem. The P-form of the first differential approximation of the difference schemes is used for theoretical justification of these numerical results.
Keywords: high-order difference schemes, shallow water equations, centered rarefaction waves.
Funding agency Grant number
Russian Science Foundation 22-11-00060
The research in Sections 4–7 was supported by the Russian Science Foundation, project no. 22-11-00060.
Presented: E. E. Tyrtyshnikov
Received: 27.03.2024
Revised: 23.07.2024
Accepted: 23.07.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue 1, Pages 349–356
DOI: https://doi.org/10.1134/S1064562424702211
Bibliographic databases:
Document Type: Article
UDC: 519.63, 532.3
Language: Russian
Citation: V. V. Ostapenko, E. I. Polunina, N. A. Khandeeva, “On the accuracy of calculating invariants in centered rarefaction waves and in their influence area”, Dokl. RAN. Math. Inf. Proc. Upr., 518 (2024), 65–74; Dokl. Math., 110:1 (2024), 349–356
Citation in format AMSBIB
\Bibitem{OstPolKha24}
\by V.~V.~Ostapenko, E.~I.~Polunina, N.~A.~Khandeeva
\paper On the accuracy of calculating invariants in centered rarefaction waves and in their influence area
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 518
\pages 65--74
\mathnet{http://mi.mathnet.ru/danma552}
\crossref{https://doi.org/10.31857/S2686954324040109}
\elib{https://elibrary.ru/item.asp?id=74176081}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue 1
\pages 349--356
\crossref{https://doi.org/10.1134/S1064562424702211}
Linking options:
  • https://www.mathnet.ru/eng/danma552
  • https://www.mathnet.ru/eng/danma/v518/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025