Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 519, Pages 14–17
DOI: https://doi.org/10.31857/S2686954324050032
(Mi danma558)
 

MATHEMATICS

Infinite algebraic independence of polyadic series with periodic coefficients

V. G. Chirskii

Lomonosov Moscow State University, Moscow, Russia
Abstract: Consider sequences of integers $a^{(k,j)}_n$, $k=1,\dots, T_j$, $j=1,\dots,m$ such that $a^{(k,j)}_n=a^{(k,j)}_{n+T_j}$, $j=1,\dots,m$, $k=1,\dots,T_j$, $n=0,1,\dots$, and consider the series $F_{j,k}(z)=\sum_{n=0}^\infty a^{(k,j)}_n n! z^n$, $k=1,\dots,T_j$, $j=1,\dots,m$. The conditions are established under which the set of series $F_{j,k}(z)$, $k=2,\dots,T_j$, $j=1,\dots,m$ and the Euler series $\Phi(z)=\sum_{n=0}^\infty n!z^n$ are algebraically independent over $\mathbb C(z)$ and for any algebraic integer $\gamma\neq0$, their values at the point $\gamma$ are infinitely algebraically independent.
Keywords: polyadic numbers, infinite algebraic independence.
Presented: A. L. Semenov
Received: 12.09.2024
Revised: 02.10.2024
Accepted: 02.10.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue 2, Pages 432–434
DOI: https://doi.org/10.1134/S1064562424702296
Bibliographic databases:
Document Type: Article
UDC: 511.36
Language: Russian
Citation: V. G. Chirskii, “Infinite algebraic independence of polyadic series with periodic coefficients”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 14–17; Dokl. Math., 110:2 (2024), 432–434
Citation in format AMSBIB
\Bibitem{Chi24}
\by V.~G.~Chirskii
\paper Infinite algebraic independence of polyadic series with periodic coefficients
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 519
\pages 14--17
\mathnet{http://mi.mathnet.ru/danma558}
\crossref{https://doi.org/10.31857/S2686954324050032}
\elib{https://elibrary.ru/item.asp?id=75994109}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue 2
\pages 432--434
\crossref{https://doi.org/10.1134/S1064562424702296}
Linking options:
  • https://www.mathnet.ru/eng/danma558
  • https://www.mathnet.ru/eng/danma/v519/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025