Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 519, Pages 33–38
DOI: https://doi.org/10.31857/S2686954324050076
(Mi danma562)
 

MATHEMATICS

Study of the bias of $N$-particle estimates of the Monte Carlo method in problems with particle interaction

G. A. Mikhailovab, G. Z. Lotovaab, S. V. Rogazinskiiab

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Abstract: The paper gives a theoretical and numerical justification of the bias with the $O(1/N)$ order for the $N$-particle statistical estimates of the functionals of the solution of nonlinear kinetic equations for the model with interaction of particle trajectories. An estimate of the coefficient in the corresponding bias formula is obtained.
Keywords: chaos propagation hypothesis, Monte Carlo method, Boltzmann equation, rarefied gas theory, SEIR epidemic model, single-particle density distribution, $N$-particle ensemble, $\delta$-continuity, Markov chain.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNM-2022-0002
This work was performed at the Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences within the state assignment, project FWNM-2022-0002.
Received: 02.07.2024
Revised: 09.09.2024
Accepted: 19.07.2024
English version:
Doklady Mathematics, 2024, Volume 110, Issue 2, Pages 416–420
DOI: https://doi.org/10.1134/S1064562424601513
Bibliographic databases:
Document Type: Article
UDC: 519.676
Language: Russian
Citation: G. A. Mikhailov, G. Z. Lotova, S. V. Rogazinskii, “Study of the bias of $N$-particle estimates of the Monte Carlo method in problems with particle interaction”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 33–38; Dokl. Math., 110:2 (2024), 416–420
Citation in format AMSBIB
\Bibitem{MikLotRog24}
\by G.~A.~Mikhailov, G.~Z.~Lotova, S.~V.~Rogazinskii
\paper Study of the bias of $N$-particle estimates of the Monte Carlo method in problems with particle interaction
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 519
\pages 33--38
\mathnet{http://mi.mathnet.ru/danma562}
\crossref{https://doi.org/10.31857/S2686954324050076}
\elib{https://elibrary.ru/item.asp?id=75994113}
\transl
\jour Dokl. Math.
\yr 2024
\vol 110
\issue 2
\pages 416--420
\crossref{https://doi.org/10.1134/S1064562424601513}
Linking options:
  • https://www.mathnet.ru/eng/danma562
  • https://www.mathnet.ru/eng/danma/v519/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025